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ABSTRACT

The strength characteristics of quasi-homogeneous, nonisotropic
materials are derived from a generalized distortional work criterion. For
unidirectional composites, the strength is governed by the axial, transverse,

and shear strengths, and the angle of fiber orientation.

The strength of a laminated composite consisting of layers of uni-
directional composites depends on the strength, thickness, and orientation of
each constituent layer and the temperature at which the laminate is cured.

In the process of lamination, thermal and mechanical interactions are induced
which affect the residual stress and the subsequent stress distribution under

external load.

A method of strength analysis of laminated composites is delineated
using glass-epoxy composites as examples. The validity of the method is

demonstrated by appropriate experiments.

Commonly encountered material constants and coefficients for stress

and strength analyses for glass-epoxy composites are listed in the Appendix.
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NOMENCLATURE
A = In-plane stiffness matrix, 1b/in.
A® = Intermediate in-plane matrix, in./1lb
A' = In-plane compliance matrix, in./lb
B = Stiffness coupling matrix, lb
B=:< = Intermediate coupling matrix, in.
B' = Compliance coupling matrix, 1/1b

Anisotropic stiffness matrix, psi

D = Flexural stiffness matrix, lb-in.
D=': = Intermediate flexural matrix, 1lb-in.
D' = Flexural compliance matrix, 1/lb-in.

Young's modulus, psi
Axial stiffness, psi

H" = Intermediate coupling matrix, in.

Plate thickness, in.

M = Distributed bending (and twisting) moments, 1lb
T

M~ = Thermal moment, lb

M = T

Effective moment = Mi + Mi

cos @, or

cross-ply ratio (total thickness of odd layers over that of even layers)
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NOMENCLATURE (Continued)

N = Stress resultant, 1b/in.
T _ .
N~ = Thermal forces, 1b/in.
N = Effective stress resultant = Ni + NiT

sin 8, or

total number of layers

Ratio of normal stresses = 02/ o

Ratio of shear stress = 06/ 9

Ratio of normal strengths = X/Y

Shear strength of unidirectional composite, psi
Shear strength ratio = X/s

Anisotropic compliance matrix, 1/psi
Temperature, degree F

Coordinate transformation with positive rotation
Coordinate transformation with negative rotation
Axial strength of unidirectional composite, psi
Transverse strength of unidirectional composite, psi
Thermal expansion matrix, in./in./degree F

Strain component, in, /in.

In-plane strain, component, in. /in.



NOMENCLATURE (Continued)

6 = Fiber orientation or lamination angle, degree
o = Curvature, 1/in.

A = 1= ¥y ¥

0. = Stress components, psi

T i = Shear stress, psi

v = Poisson's ratio

Vi = Major Poisson's ratio

vy = Minor Poisson's ratio

SUPERSCRIPTS

+ = Positive rotation or tensile property

- = Negative rotation or compressive property

k = k-th layer in a laminated composite

-1 = Inverse matrix

SUBSCRIPTS

i, j = 1,2, ... 6orx, y, z in 3-dimensional space,

1

1, 2, 6 or x, y, s in 2-dimensional space
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SECTION 1

INTRODUCTION

Structural Behavior of Composite Materials

The purpose of the present investigation is to establish a rational
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Ultimately, materials design can be integrated into structural design as an
added dimension., Higher performance and lower cost in materials and

structures applications can therefore be expected.

Following the research method outlined previously, Lx the present
program combines two traditional areas of research — materials and
structures. These two areas are linked by a mechanical constitutive equa-
tion, the simplest form of which is the generalized Hooke's law. The mate-
rials research is concerned with the influences of the constituent materials
on the coefficients of the constitutive equation, which in this case, are the
elastic moduli. The structures research, on the other hand, is concerned
with the gross behavior of an anisotropic medium. An integrated structural
design takes into account, in addition to the traditional variations in thick-
nesses and shapes, the controllable magnitude and direction of material
properties through the selection of proper constituent materials and their

geometric arrangement,

*References are listed at the end of this report.



Following the framework just described, the elastic moduli of aniso-~

3

tropic laminated composites were reported previously, The appropriate

constitutive equation was:

N A B[ €

(1)
D K

M B 1
This equation, of course, included the quasi-homogeneous orthotropic com-
posite, which represented a unidirectional composite, as a special case,
The material coefficients A, B, and D were expressed in terms of material
and geometric parameters associated with the constituent materials and the
method of lamination. This information provided a rational basis for the
design of elastic stiffnesses of an anisotropic laminated composite. Thus,
the investigation reported in References 2 and 3 involved both structures
research, in the establishment of Equation (1) as an appropriate constitutive
equation, and materials research, in the establishment of the parameters

that govern the material coefficients of Equation (1).

The present report covers the strength characteristic of anisotropic
laminated composites, which again includes the quasi-homogeneous com-
posite, as a special case, Unlike the case of the elastic moduli, the present
report covers only the structures aspect of strengths; the materials aspect
is to be investigated in the future. The appropriate constitutive equation for
the strength characteristics is established in this report. Only when this
information is available, can the area of research from the materials stand-
point be delineated. Guidelines for the design of composites from the

strength consideration can be derived.

Scope of Present Investigation

The present investigation is concerned with the structures aspect of
the strength characteristics of composite materials, The strength of a
quasi-homogeneous anisotropic composite is first established. Then the

strength of a laminated composite consisting of layers of quasi-homogeneous



composites bonded together is investigated, The validity of the theoretical
predictions is demonstrated by using glass-epoky resin composites as test

specimens,

The main result of this investigation is that a more realistic method
of strength analysis than the prevailing netting analysis is obtained. The
structural behavior of composite materials is now better understood, and one
can use these materials with higher precision and greater confidence. A
stride is made toward the rational design of composite materials. Although
much more analyses and data generation still remain to be done, the present
knowledge of stiffnesses and strengths of composite materials, as reported
in References 2 and 3, and in this report, respectively, is approaching the
level of knowledge presently available in the use of isotropic homogeneous

materials.
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SECTION 2

STRENGTH OF ANISOTROPIC MATERIALS

Mathematical Theory

Several strength theories of anisotropic materials are frequently
encountered in the study of composite materials. Hill postulated a theory in
19484 and later repeated it in his plasticity book. > Using his notation, it is
assumed that the yield condition is a quadratic function of the stress
components

2 (o) = F (o, - 0, + G(o, - o) + H(o_ - o)?

(2)

+2L % 1 2Mr % 2Nl =
vz zZx Xy

where F, G, H, L, M, N are material coefficients characteristic of the
state of anisotropy, and x, y, z are the axes of material symmetry which
are assumed to exist. This yield condition is a generalization of von Mises'
condition proposed in 1913 for isotropic materials. Note that Equation (2)
reduces to von Mises' condition when the material coefficients are equal,
Beyond this necessary condition, there seems to be no further rationale.
Nevertheless, this yield condition has the advantages of being reasonable
and readily usable in a mathematical theory of strength because it is a con-
tinuous function in the stress space. For identification purposes, this con-

dition will be called the distortional energy condition.




Marin proposed6 a strength theory equivalent to Equation (2), except
the principal stress components were used instead of the general stress
components., The use of principal stresses is, in fact, more difficult to
apply to anisotropic materials, since the axes of material symmetry, the
principal stress, and the principal strain are, in general, not coincident.

Thus, principal stresses per se do not have much physical significance.

Another strength theory of anisotropic material is called the 'inter-

action formula, ' as described by a series of reports by the Forest Products

7,8,9

Laboratory and apparently independently by Ashkenazi. 10 The interaction

formula in Hill's notation takes the following form:

2 2 2
(k> - U\_ay + & + Txy. = 1
X XY Y S
2 2 T 2
g g0 g
Gf % (2 ()
(Y) vz T \zZ o) 1 (3)
crz)2 05 0y + (UX)Z L Tox )2 -
<z T TZ X X (R

Since the composite material of interests now is in the form of thin
plates, a state of plane stress is assumed. Then Equations (2) and (3) can

be reduced, respectively:

2 2
Oy 1 9x0y Oy Txy _
(X)"FXY+(?)+<S)‘1 (4)

:':The shear strengths used here are Q, R, S rather than R, S, T, in
order to spare T for temperature.
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The difference between the yield condition of distortional energy, the inter-
action formula, and von Mises is shown in Figure 1, assuming tensile and

compressive strengths of the materials are equal.

For the present program, it is assumed that the distortional energy
condition is valid. This, of course, will be substantiated experimentally
later in this report, It is also assumed, for the present, that failure by
yielding and by ultimate strength are synonymous. This will be shown to be
reasonable for glass-epoxy composites, which exhibit linearly elastic
behavior up to failure stress with little or no yielding. The work contained

78,9 and Askenazi10 had two restrictions:

in the Forest Product reports
(1) no differentiation was made between the homogeneous and laminated com-
posite, (2) shear strength was not treated as an independent strength prop-

erty. In the present investigation, both these restrictions are removed.

Quasi-homogeneous Composites

The strength of quasi-homogeneous anisotropy composites was
. .11 .
reported by Azzi and Tsai. For the sake of completeness, the essential

points of this reference are repeated here.

It is the purpose of this section to demonstrate how the distortional
energy condition can be applied to a quasi-homogeneous anisotropy composite
subjected to combined stresses. One of the basic assumptions of this condi-
tion is that there exist three mutually perpendicular planes of symmetry
within the anisotropy body. This means that the body is really orthotropic

rather than generally anisotropic from the point of view of strength. Under
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Figure 1. Comparative Yield Surfaces
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this assumption, the yield condition must be applied to the state of stress

expressed in the coordinate system coincident with that of the material

symmetry.

Thus, the state of stress imposed on a body must be transformed

to the coordinate system of material symmetry and then the yield condition

applied. Let x-y be the material symmetry axes, and 1-2, the reference

coordinate axes of the externally applied stresses, the usual transformation

1
equation
- -
Ox
%y
Os
L .

where m =

in matrix form is:

m2 n2 2 mn

n2 rn2 -2 mn
2

-mn mn m -

o

%6

J

cos 6, n=sin f, and positive 8 is shown in Figure 2.

Figure 2. Coordinate Transformation of Stress

(6)



For convenience, the following notations are used:

P = Uz/Ul,qz0’6/01,1':X/Y,S=X/S (7)

Substituting the notations in Equations (6) and (7) into the yield condition in

the form of Equation (4), one obtains:

[1-p+p2r2+qzsz] rn4+2q [3—p—2pr2+(p—1)sz] m3n

s

EZqZ'-I-Z(p+2q2)rz+(p-1)2(52—l)—qu2 m n
(8)

+2q [3p—l-2r2—(p—l)52] mn3+ [ioz—p+r2+qzsz:' n4

x/ 0% = v/ 0)? = (s8/9))°

This result may be summarized as follows: For a given anisotropic body in
reference coordinates 1-2, specified by X, Y (or r), and S (or s), with a
given orientation of the material symmetry axes, §, and subjected to com-
bined stresses (71, 02 (or p) and T (or q), the magnitude of the applied
stress 01, at failure, can be determined by solving Equation (8) for 9.
Alternatively, Equation (8) may be regarded as the transformation equation
for the strength of a quasi-homogeneous anisotropic material subjected to
combined stresses; i, e., the strength characteristics as a function of the

orientation of the symmetry axes, 0.
For uniaxial tension, p = q = 0, the failure condition is

2 4

m4+(sz-l)m2n2+r n

"

X/ 9)° (9)

or

1/2
o, = X/ [m4 + (s2 -1) mZn? + r2n4] (10)

10



Thus, by performing uniaxial tension tests on specimens with different
orientations of the material symmetry axes; i.e., different values of 0, one
finds directly the transformation property of strength. What is equally
important is that the strength characteristics of a quasi-homogeneous aniso-
tropic material under combined stresses are simultaneously verified. By a
simple substitution of Equation (6) into (9), while maintaining p = q = 0, one

recovers, as expected, the original yield condition shown in Equation (4).

Equation (8) can be reduced to other simple cases in a straight-
forward manner. For example, the case of hydrostatic pressure requires
p=1, q=0, from which one can show that the maximum pressure is equal

to the transverse strength, Y, and is independent of the orientation, 0.

The case of an internally pressurized cylindrical shell is described

by p=2, q =0, from which Equation (8) reduces to

(4 r2 - 1) rn4 + (4 r2 -1+ sz) rnzn2 + (r2 + 2) n4 = (X/ Ul)2 (11)

For isotropic material, it can be shown that
r = 1, s = Vv 3

which agrees with von Mises' condition. 5 Equation (11) then reduces to

x/V3

9]
and (12)

2X/V3 = 1.155 X

92

which is the well-known result between the maximum hoop stress o, and the

uniaxial strength X, >

11



The case of pure shear can be derived by letting 01 = 02 =0 in

Equation (6), and then by substituting it into Equation (4), * one obtains

4 m?n? (£% + 2)/s% + (m® - n®)% = (s/ a,) (13)

or
. 1/2
06 = s/ [4 rnzn2 (r2 + 2.)/52 + (m2 - HZ)ZJ (14)

It is interesting to note that:

when § = 0° or 90°, o, =S (15)

2 1/2 e
when 0 = 145°, O¢ = X/[r +2J

it

Y, ifr >> 1 (16)

XN 3, if r = 1 (isotropy)

In conclusion, it is seen that the distortional energy condition can be
easily applied to cases frequently encountered in the design and use of aniso-
tropic composites. The strength characteristics involve the axial, trans-
verse and shear strengths, X, Y, and S, respectively, and the orientation of
the material symmetry axes, § . This strength theory is quite different from
the netting analysis, which is still used extensively in the filament-winding
industry. The inaccuracy of netting analysis as a theory or design criterion
is far less damaging per se than the influence of its erroneous implications

on many recent and even current research programs on filament-winding.

*Equation (8) cannot be used directly for this case because al is equal to
zero,

Aok . 6 . .
This is the shear strength used in Marin's theory., It is a derived
quantity, as opposed to X, Y, and S, which are the ''principal strengths,

12
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Experimental Results

In the preceding subsection, the utility from the mathematical stand-
point of yield condition as applied to a quasi-homogeneous anisotropic com-
posite has been outlined. In this subsection, experimental results Which

demonstrate the validity of the proposed theory of strength will be reported.

The specimens used were made of unidirectional glass-filaments
preimpregnated with epoxy resin, This material is supplied by the U, S.
Polymeric Company with a designation of E-787-NUF. * The curing cycle
involved no preheat, 50 psi pressure, and 300°F temperature for 2 hours
iollowed by slow cooling. Tensile test specimens were cut from the cured
panels using a wet-bladed masonry saw, As it was found that specimens
of uniform cross section had a tendency to fail under the grips at low angles
of fiber orientation, a diamond-coated router was used to shape specimens
with a reduced test section, in '"dog-bone'! fashion. Approximate specimen
dimensions were (in inches): overall length, 8. 00; overall width, 0.450;
length of test section, 2.50; width of test section, 0.180; thickness, 0,125,
A 3-inch-radius circular arc, tangent to the test section, connected the test
section to the maximum end section, Additionally, aluminum tabs (a cata-
logue item) were bonded to the ends of the specimens to distribute the loads
imposed by the grips. A special fixture was devised: (1) to align the tabs
with the specimens to ensure application of pure axial load, and (2) to be
capable of making up to 20 individual specimens simultaneously. Sample

specimens, before and after test, are shown in Figure 3,

The values of the axial and transverse normal strengths X and Y for
the material employed were determined from simple tension tests of speci-
mens having fiber orientations of 0 and 7 /2 to the direction of applied stress,
respectively, The shear strength S was determined from the simple torsion
test of a filament-wound thin-walled torsion tube having all circumferential

windings.

The same material was used to make test specimens reported in
Reference 2.

13
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Figure 3. Tensile Test Specimens



To verify the theoretical results, specimens were cut at 5-degree
increments in the lower angle ranges where strength variation is greatest,
and at 15-degree increments for higher angles. The strengths measured for
these specimens were then compared with results obtained from the theory
evaluated with the corresponding values for X, Y, and S. The theoretical
prediction using Equation (10), and experimental results are shown in
Figure 4. The results indicate that the validity of the proposed theory of
strength is demonstrated, as most measured strength values are in agree-
ment with theoretical predictions. The values for X, Y, and S for the case
illustrated were 150, 4 and 6 ksi. The lack of excellent agreement at some
of the higher values of § may be caused by increased sensitivity of the speci-

men edges to the shaping operation and the minute crazing that it sometimes

induces. This sensitivity increases with the fiber orientation € ; hence,
ot e amminod ln meranemtoanAd fm dlm tmmemra eadimen Af s tream A o
5"‘ Cadal Laditc lIluslL CACICIoCU 111 LIl Pl UPCI.J. allul L DPCLLLIJCILD.

Also shown in Figure 4 is the theoretically predicted stiffness as a
function of fiber orientation, together with experimental measurements. The
theoretical curve, shown as the solid line, is computed using the usual trans-~
formation equation of the stiffness matrix:

2

4 2
1 —
C = m C11+2mn CZ

+n4C +4m2n2C

2 22 66

where the following moduli, same as those in Reference 2, are used:

Cyp = 7.97x 106 psi

_ 6 .

Ciz = 0.66 x 10~ psi

~ 6 .

C,, = 2.66 x 10 psi
Cie ™ C26 = O

C,, = 1.25 x 10° psi

66 . psi

15
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From Equation (10), one can examine the variation of the transforma-
tion property of composite strength with the basic strength characteristics
X, Y, and S. The effect of Y is significant for large angles of orientation,
and the effect of axial strength, X, is significant for small angles. Further,
the shear strength, S, becomes the dominant strength characteristic for in-
termediate angles of orientation. These influences of each strength charac-
teristic must be taken into consideration in any attempt to improve the
strength of composite materials having arbitrary fiber orientations to the

applied load.

It is reasonable to conclude that the present investigation of the
strength of a quasi-homogeneous anisotropic composite under any state of
combined stresses can be predicted with accuracy. The theory has been
developed for the most general case of plane stress and discussed in detail.
Although the experiment confirmation was limited to uniaxial tension, a
state of combined stresses is actually induced in the coordinate system
representing the material symmetry. It is assumed that the tensile and
compressive strength characteristics are equal. If they are not equal, one
can easily introduce say x*, x7, Y7, Y7, where the plus and minus super-
scripts denote tensile and compressive strengths, respectively. No con-
ceptual difficulty is expected for this modification, as indicated for example

in References 6 and 7.

For the particular specimens, the shear strength, S, falls between
the two normal strengths, X and Y. The ratio of the shear strength over
the transverse strength are 1.5 for the specimens. This value is not much
different from ‘/3—which is the ratio for isotropic materials or a composite
material reinforced by spherical inclusions. The present specimen has a
lower transverse strength than shear strength. This implies that the shear
strength is at a minimum for a 45-degree fiber orientation, as can be seen
from Egquations (14) and (16) (assuming Y+ = Y ). This is particularly
interesting in view of the fact that the shear modulus of common orthotropic
materials, which include the present specimens, is at a maximum at 45-
degree orientation. The behavior of a laminated composite, on the other
hand, will be quite different from a quasi-homogeneous composite, as will

be reported in the next sections.

17
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SECTION 3

STRENGTH OF LAMINATED COMPOSITES

Mathematical Theory

The strength of laminated anisotropic composites is dependent on the
thermomechanical properties of the constituent layers and the method of lam-
ination, which include the thickness and orientation of each layer, the stack-
ing sequence, cross-ply ratio, helical angle, the laminating temperature, etc.
In the process of lamination, two sources of interaction are induced. First,
there is a mechanical interaction caused by the transverse heterogeneity of
the composite; i. e., material properties vary across the thickness of the
composite, and the cross-coupling of the "16'" and '"26' components of the
stiffness matrix. As a result, the stress across the composite is not uni-
form and is distributed according to the relative stiffnesses of the constituent
layers. Second, there is a thermal interaction caused by the differential
thermal expansion (or contraction) between constituent layers. Since most
composites are laminated at elevated temperatures, initial stresses are
induced if the service temperature of the composite is different from the lam-
inating temperature. Taking into account both mechanical and thermal inter-
actions, the strength of a laminated composite can be described by a piece-
wise linear stress-strain relation. Discontinuous slopes in this curve occur
when one or more of the constituent layers have failed. The ultimate strength
of the composite is reached when all the constituent layers have failed,
Throughout this section, it is assumed, as before, that the tensile and com-

pressive properties are equal, and yielding and strength are synonymous.

19



The strength analysis for the present investigation is based on the
strength-of-materials' approach. The general thermoelastic analysis
of laminated anisotropic composites is outlined first, Only the problem
of shrinkage stress is treated here, although the analysis is applicable to

thermal stress problems in general,

For the sake of completeness, the basic constitutive equation of

thermoelasticity and the essential points of Reference 13 are repeated here.

It is assumed that each constituent layer of the laminated composite is
quasi-homogeneous and orthotropic, and is in the state of- plane stress,
Using the usual contracted notations, 12 the three-dimensional generalized

Hooke's law for any constituent layer is:
€. = o i, j = 17
;=89 +a,T, i, j=1,2,...6 (17)

This equation states that the total strain is the sum of mechanical strain (the
first term) and free thermal strain (the second term). One can invert
Equation (17) and obtain
o.=C.. (e, -a.T 18
i = Gy (g -ayD) (18)
. . 12 .14 .
For an orthotropic layer, the stiffness” and thermal expansion = matrices

are:

[Cy, C,, G 0 0 0
C22 C23 0 0 0
C33 0 0 0
ij = Cpp O 0 (19)
Cyy O
i Ce6 |

20
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€G3-¢ T:'_31'(‘1 'alT)'ci(‘z‘“z
33 33

T)

Substituting Equation (23) into (18),

& C,.C
13 13C32
g, = (C -—=—) (€, -a,T) + (C - — ") (€, -a,T)
1 117, 12 55 2 "2
C..C C
) 23%13 32
o, = (Cyy - TC,y ) (€ -4 T) +(Cp, - ., y(€; -a,T)

&

(20)

(21)

(22)

(23)

(24)

(25)

(26)

21



In terms of engineering constants, 15

13 g/

O
1
1l

@]
|
I
Q]
~
>

(27)

where A = 1 - VlZ VZl

The equivalent constitutive equation for a laminated anisotropic com-
posite can be derived using the basic assumption of the nondeformable nor-

mals of the strength of materials, It is assumed that

€. = (.o+ ZK. (28)
i i i

where, following the notations in Reference 2, i = 1, 2, and 6.

Equation (18), when integrated across the thickness of the laminated

composite, becomes:

N. = N.+N = A.. €. +B,. «, (29)
1 1 1 1] ] 1 )

M, (30)

i

B
+

S
I
b
+
@]
x
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where

h/2
(Ni’ Mi) = »/:h/z a, (1, z) dz (31)
(NT MTrxfwzc a.T (1, z) dz (32)
A R b
h/2 (33)
_ 2
(A Byj Dy = ‘/:h/Z C,j (12 2°) dz

Equations (29) and (30) are the basic constitutive equations for a lam-

inated anisotropic composite, taking into account equivalent thermal loadings.

The stress at any location across the thickness of the composite can

be determined as follows:2

— |
N A | B [(o
|
= |-l (34)
M B , D |J<
Then, by matrix inversion,
B ] [ P2 ] :':— i ]
€© AT | B N
|
= -y - (35)
< 1 Sk
| ™ | 5" 1 p*] |«
— - r . I - r ]
]
e © 1a 1 B N
1
S R S (36)
1 I [} _
| k] lu | bl [ ™M]
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where A" - ao°1
BY = - a™lp
H" = Ba~!
D* = pD-BA !B
' sk b :::_1 (37)
A" = A -BD H
B' - H' _ B>,<D:,:_l
D' = p*!
Substituting Equation (36) into (28),
€. = €2 + zk
i i i
(38)
= (A.. +zB!,) N. + (B!. + zD!.) M.
1) 1] J 1] 1] J
from Equation (18), the stress components for the k-th layer are:
o) L ) (g g
1 1) J J
(39)

= (k) ! 1 T ! 1 'V _ (k) ]
= Cij (Ajk + ZBjk) Nk + (Bjk + ZDjk) Mk aj T

This is the most general expression of stresses as functions of stress
resultants, bending moments, and temperature. The same material coeffi-
cients A', B' and D', as reported in Reference 2 and also tabulated in the
Appendix of this report, can be used for the thermal stress analysis., This
single link between the isothermal and nonisothermal analyses is achieved by
treating thermal effects as equivalent mechanical loads; e. g., N'iI‘ and MlT in

Equation (32).

It can be shown that for quasi~-homogeneous plates, B'= H'= 0; i. e.,

no cross-coupling exists. In addition,

]
=

A, C..
1 ij
(40)

i
Q
i
o
w
S~
St
()
n
>
u
=y
oo
~
et
N

D..
1)
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Equation (39) can be reduced to:

a_Aij Al (N+12z—)_aT
i~ "h jk VT k 2 j
(41)
_ 1l = 12 z —
= (N, + 2 M) - CyeyT

H
using the relationship of A being the inverse of A for quasi-homogeneous

plates, If the plate is also isotropic,

_ EaT
CydT = (C % + Cpp%) T =
h/2
N=N.+N.T=Ni+1E‘;f. T dz (42)
1 1 1 - h/z
h/2
I\_/I.=M.+MTF=M.+1EZ‘/‘ Tz dz
1 1 1 1 - h/Z

Substituting Equations (42) into (41), we obtain the same result as

Equation (12.2.7) of Reference 16.

As stated before, thermal stresses are induced when the operating
temperature of the composite differs from its laminating temperature. As a
typical example, it is assumed that the laminating temperature is T degrees
above the operating temperature which is assumed to be ambient. It is fur-
ther assumed that the zero-stress state exists at the laminating temperature
which is now set as the datum temperature. The operation temperature is

then -T. For a traction-free condition,

h/2
(N., M.) = (NL, M} = -Tf Cyje; (1, 2) dz (43)
! -h/2
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From Equation (39)

ogk) = cg.‘) [(A'Jfk + zBJ?k) N+ (ng + 2Dl M, ¥ a(;‘) T] (44)

For an isotropic quasi-homogeneous plate under uniform temperature,

NT aETh T

i Ty My =0
(45)
B' =0, C,.=A../h
jk ij ij
Substituting Equation (45) in (41) and.(38), one obtains, as expected
a =lNr.I‘- C.a.T=0
i h'i 1j j (46)
€. = A.N. =-aT
O N
If the temperature is linear across the thickness of the isotropic
quasi-homogeneous plate; i. e.,
T = az (47)
then by substituting Equation {47) into (32), one obtains
NT—O MT=_£i13_3_ (48)
i 7 i 12 (1 -v)
Hence, from Equations (41) and (38), one obtains, again as expected,
o =122 MT _c.aT=0
i h hZ i ij J
(49)

€. = zD{.M.T = -aaz
1 )

The results of Equations (46) and (49) agree with the elementary theory; e. g.,
Equation (9. 5. 66) of Reference 16,
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The strength analysis of a laminated anisotropic composite is accom-
plished by substituting the stress components of the k-th constituent layer,
calculated from Equation (39), into the general yield condition of Equation (8),
or its equivalent equation,” when T, is equal to zero, e.g., Equation (13).
From Equation (8), the maximum o 1’ in combination with the particu'lar p and
q that each constituent layer can sustain, can be obtained. When this maxi-
mum is reached, failure in the particular layer or layers is considered to
have occurred. After this failure, the remaining layers, which have not
failed, will have to carry additional loads. This shifting of loads is accom-
panied by a partial or complete uncoupling of the mechanical and thermal
interactions mentioned above. The net result is that a new effective stiffness
of the laminated composite is now in operation. This new stiffness, as
reflected in new values of A, B, and D matrices of Equation (34), will cause

a ~chanoge 1 the A3
a Ciallgc il vl Q

intact. The effective stress-strain relation of the composite is changed and
a "knee'' is exhibited as the slope of the stress-strain relation becomes dis-
continuous. New values of A', B', and D' matrices which are computed from
the revised A, B, and D, must now be used in Equation (39) for the computa-
tion of the stresses. These new stresses will again be substituted into the
yield condition of Equation (8), from which the next layer or layers that would
fail can be determined. This process is repeated until all the layers have

failed.

The mathematical description of the uncoupling of the mechanical and
thermal interactions is not easy to ascertain. As one possibility, cracks
transverse to the fibers will develop, which cause a degradation of the effec-
tive stiffness and a change in the stress distribution in the composite. Another
possibility is a complete delamination of the laminate, thereby uncoupling the
thermal and mechanical interactions. The exact description of the degradation

process must be treated for particular laminates, as will be shown later.
The important point intended for this section is to illustrate the exist-

ence of mechanical and thermal interactions as a direct consequence of lam-

ination. Internal stresses are induced. These stresses exist in addition to

27



the externally imposed stresses. Unlike the work of References 7 through 10,
the present investigation makes the necessary distinction between quasi-

homogeneous and laminated composites.

Cross-ply Composites

The general equations for the analysis of strength can be considerably
simplified if the laminated composite is a cross-ply composite, which con-~
sists of constituent layers oriented alternately at 0 and 90 degrees. All odd
layers have one thickness. All even layers also have one thickness but are,
in general, different from the odd layers. The lamination parameters, fol-
lowing the notations of Reference 2, include the total number of layers, n,
and the cross-ply ratio, m, which is the ratio of the total thickness of the odd
layers over that of the even layers. For the present work, as in Reference 2,

the odd layers are oriented at 0 degree.

As an illustration of how the strength analysis may be carried out, a
particular case of n = 3, m = 0.2 will be shown in detail. Only uniaxial ten-
sion will be considered, i, e., only N1 is nonzero. Since the laminated com-
posite is symmetrical with respect to the centroidal axis by virtue of having
n = 3, and only symmetrical loading (i. e., all bending moments are zero) is
considered, the stress distribution in the first and third layers will be iden-
tical. Thus, only two layers have to be considered in the strength analysis:
the inner layer (layer 2) and the outer layer (layer 1 or 3). From Equa-

tion (39), for the outer layer,

(1)_ (1) 1 N 1 N (1) (2) [~ [~ (1)
o = Cll(AllN1+A.12N2-a1 T) +C12(A21N1+A22N2-a2 T)
_ 1) 4 (1) A
=Gy A T C A Ny
(50)
(1) A, (1) ., T 1) ., 1) .,
+[ (Ciy AL - Cla Ay Nyt (6(11)A12+C(12)A22) Ny

(1) 5 (1) {1)
(Cly @1 +C1p a3) T]
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oo W s clay) N

22 821)

2 1
(1) (1) T (1) (1) T
[ (CZI A' C22 Al 1) Nl + (C A' C22 A'Z) N,
(51)
(1) , (1) (1) o (1)
(Coyey *Czz%2 ) T]
In the above, Equation (29) was used; i. e.,
T — T — _
N, =N, +N;, N, =N, , N, =0 (53)
for the inner layer,
(2) _ (2) (2)
o “T=cit (a Jk N -7 1) (54)

This equation, when expanded, will be the same as Equations (50) through

(52), except that superscript (1) will be replaced by superscript (2).

Using the following experimentally determined material properties
which represent typical unidirectional glass filament~epoxy resin compos-
ites,": one can evaluate the stress components for the inner and outer layers

in terms of the axial stress resultant N, and the lamination temperature T.

1

*The same composite which was reported in Section 2,
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(1)
Ci
)

12

(1)
C22

(1)
Coo

(D)

= c;f?_) = 7.97 x 10° psi
P - R T ) )
= Cj,) = 0.66x 10 psi
= cf?) = 2,66 x 10° psi
= Cg?é) = 1.25x106 psi
(55)
= ~(1) _ A2y _ A(2) _
= Cae T Crp T C26 7O
= agz) - 3.5x10°%/°F
=al® = 114x107%%F
(2) _
a 6 = 0

In'a three-layer (n = 3) and m = 0.2 cross-ply composite, one can compute

the following quantities which are needed for substitution into Equations (50)

through (53). From Equations (33) and (37),

1
A.11

1
Ao

1
Aso

0.29 % 10‘6 in. /1b
-6 .
-0.03 x 10 " in./1b (56)

0.14 x 10'6 in. /1b

*The detailed calculation and some typical data for glass-epoxy
composites are shown in the Appendix,
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From Equation (32), assuming a constant lamination temperature T, one can

compute the equivalent thermal forces and moments:

NI =33.1T Ib-in.
T :

N, = 35,0 T 1lb-in, (57)
T_ ., T_

N6 = Mi = 0, as expected for three-layer cross-ply

Substituting the computed values in Equations (56) and (57) into the equations

for the stress components (50) through (55), for the outer layers,

0(11):2.27N +35.5 T

1
(1) _
o5 —O.IZNl-lb.OT (58)
o (61)=O

and for the inner layer,

0(12)=O.?5N 71T

]
o éz):o.oz N, +3.27T (59)
o 22)—0

The yield condition governing the initial failure is determined in terms of the
maximum axial stress resultant N, by substituting Equations (58) and (59) into

the general yield condition Equation (8) for € = 0 and 90 degrees, respectively.
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Equation (8) for the case of g = 0 (zero shear) becomes, for 6 = 0 degree

(outer layer),

2 2
l1-pt+tp r2=(X/01)

2 2 2 _ 2
or 01-0102+r OZ—X

for 8 = 90 degrees (inner layer),
2 2 2
p -ptr = (X/Ul)

or r 02-00+02=X

(60)

(61)

Using the following experimentally determined strength values whlch repre-

sent a typical unidirectional glass filament-epoxy resin comp051te,

Axial Strength = X = 150 ksi
Transverse Strength = Y = 4 ksi
Shear Strength = 8 = 6 ksi

from which, one obtains

X/Y =37.5

H
1l

25.0

s = X/S

(62)

(63)

Substituting Equations (63) and (59) into (61), and solving the resulting quad-

ratic equation for Nl’

the inner layer:

N159.6T4—L33Y

“The same composite as reported in Section 2.
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For a composite laminate at 270°F, or T = -200,

N, = 3400 psi (65)

1

For that laminated at room temperature, or T = 0,

N, = 5320 psi (66)

1

Similarly, substituting Equations (63) and (58) into (60), one obtains the stress

resultant that causes failure in the outer layer:

N, = 110 T + (57.5 Y* - 3000 12)1/2 (67)
For a composite laminated at 27OOF, or T = -200,
N, = 6300 psi (68)

For that laminated at room temperature, or T = O,
Nl = 30, 400 psi (69)

Comparing the results above, one can see that the inner layer will fail before
the outer layer. It is also shown that the first failure would occur at a higher
stress if the lamination temperature is ambient. From Equation (59) it can
be seen that an elevated lamination temperature (T = negative) causes a pre-
tension in o, which is the normal stress transverse to the fibers. This will

1

reduce the maximum N1 at the "knee. "
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The effective stiffness of the laminated composite up to the "knee' is simply
the reciprocal of A'11 (for unity thickness); i. e., from Equation (56) the effec-
tive stiffness is 3.4 x 10" psi. Thus, the in-plane strain at the '"knée' is,

using N; = 3400 from Equation (65),

(‘1’ = 3400/3.4 x 108

= 0.1% (70)
The behavior of the cross-ply composite after the 'knee'' depends on the
degree of uncoupling of the mechanical and thermal interactions. An imme-
diate possibility is that cracks transverse to the fibers are developed in the
inner layer. This can be described by letting ngz) of the inner layer remain
constant while the remaining components are '"degraded'' to a very small
fraction of their intact values, as listed in Equation (55). The resulting mate-

rial properties of this partially degraded composite (inner layer degraded)

become in place of Equation (56), (58) and (59),

A'll = 0.75 x 10'6 in. /1b

A -6 .
Ay, = 0. 01 x 10™" in. /1b (71
Al = 0,14 x 10'6 in. /1b

5o . )

U(ll) = 6.00 N

1
(1) (72
02 = 0.47 N1 -19.3T
(1)
06 0
and

2 2
o~ o) (73)
(2) _
02 = —0.09Nl+3.9T
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Note that the thermal coupling in the l-direction is reduced to zero. But the
thermal coupling in the 2-direction, as shown in Equation (72), is increased
after the degradation. In fact, the increase is so high (equal to 19.3 T) that
the outer layers cannot remain intact after the initial degradation. What this
means is that the outer 1ayérs will also degrade immediately, thus causing a
complete uncoupling between the layers. Thereafter, only the uncoupled outer
layers can carry the load. One can easily solve for the axial load that a par-
tially degraded cross-ply can carry by substituting the stress components of
Egquation (72), into the yield condition of Equation (60). The maximum Nl

turns out to be considerably lower than the existing stress of 3400 psi.

After two successive failures, which occur almost simultaneously, the
laminated composite becomes completely uncoupled both mechanically and
thermally. Actual separation among constituent layers has been observed. In
order to characterize this completely degraded composite, it is assumed that
only the stiffness parallel to the fibers remain; i.e., C(lll) and C(ZZZ) are the
only nonzero components. (In order to avoid computational difficulties in the
matrix inversion, the other components are assumed to be vanishingly small
but not zero.) The resulting material properties of this completely degraded

composite become in place of Equations (56), (58) and (59),

Al 0.77 % 10'6 in. /1b

11
A.12 = 0 (74)
Ab, = 0.15% 107% in. /1b
22 . .
The only nonzero stress components due to N1 is:
0(11) = 6.00 Nl (75)
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Thus, the effective stiffness of the composite after the "knee' is
l/hA'll =1.3x 106 psi. The ultimate strength can be computed as follows.
The stress in the outer layers immediately before the degradation of the inner

layer is computed from Equation (58) using Nl = 3400 and T = -200,

= 618 psi = 600 psi (76)

Since the maximum stress o can reach is equal to the axial strength,

(1)
1
150, 000 psi, the outer layers can be stressed an additional amount of

150, 000 - 600 = 149, 400 psi. Using Equation (75), this additional stress
beyond the "knee!' represents a stress resultant of 149, 400/6, 00 = 24, 900 psi.
Then the ultimate stress resultant Nl is the sum of 24, 900 and 3, 400, which
is 28, 300 psi. The experimental measurement of the effective stress-strain
relation of a three-layer cross-ply composite is shown in Figure 5. The

agreement with the theoretical prediction is excellent for this case.

It can be stated that a "knee'' does exist and its existence can be ex-
plained in terms of the uncoupling of the mechanical and thermal interactions.
If the lamination temperature is ambient, then the "'knee' would occur, from
Equation (66), at N, equal to 5320 psi, instead of 3400 psi. The resultant
ultimate strength of the composite, however, turns out to be practically the

same as that laminated at 270°F.
The conventional netting analysis predicts the following stiffness and

strength, based on two-thirds of glass by volume, with glass stiffness and

strength of 10. 6 x lO6 psi and 400, 000 psi, respectively,

10. 6 x 106x2/3x2/12 = 1.18 x 106 psi

=
n

11
(77)

400,000 x 2/3 x 2/12 = 44,000 psi

Q
]

These data are also shown in Figure 5. It is interesting to note that the

measured strength is only 68 percent of that predicted by netting analysis.
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For the purpose of more extensive experimental confirmation, three-
layer cross-~-ply composites with different cross-ply ratios were made and
tested. The theoretical predictions and the experimental results for both the

effective initial and final stiffnesses (before and after the "'knee, !’

respec-
tively), and the stress levels at the '"knee'' and the ultimate load are shown in
Figure 6. It is fair to state that the present theory is reasonably confirmed
experimentally. The scatter of data can be traced partly to the difficulty in
making cross-ply tensile specimens. In the process of shaping the specimens
by a router, the layer oriented transversely to the axis of the dog-bone

specimens is often damaged.

The present theory involves lengthy arithmetic operations. Part of
this burden can be relieved by using the tables listed in the Appendix. The
input data are those listed in Equation (55). The composite moduli and the
equations for the stress components and the thermal forces and moments are
computed for two- and three-layer composites with cross-ply ratios varying
from 0.2 to 4. 0. * For each cross-ply composite, two cases will be listed:
Case 1 represents all layers intact; and Case 2, all layers completely
"degraded.! With the aid of these tables, the data as shown in Equations (56)

through (59), and (74) and (75) can be read directly.

In order to demonstrate the existence of thermal forces and moments,
a two-layer cross-ply with two equal constituent layers (m = 1) was laminated
at 270°F. At temperatures lower than the lamination temperature, the lami-
nated plate becomes a saddle-shaped surface. For a square plate with

length £, thickness h, clamped at one edge (y = 0), as shown in Figure 7,

*As shown in Reference 2, two- and three-layer laminated composites
represent two extreme cases, with all composites having larger numbers
of layers falling in between the extremes.

38

ekl



CROSS-PLY RATIO (IN.)
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the deflected surface due to homogeneous stress resultants and bending

moments can be shown to be a quadratic surface,

1 2,1 2,1
W o= s Ky x5 Koy +§K6xy+ax+by+c (78)

Where kappas are the curvatures

boundary conditions, as follows:

(1) Whenx=y=0, w=20

(2) When x £, y=0, w=20 (79)

1
o
'C/
s
i
(]

(3) When y

From the above, the displacements at the midpoint (x =4/2, y =£) and the end-

point (x = y = f) as shown in Figure 7 are:

w__ = -2— K ﬂz
Lllp o
(80)
1 2
= - 7
ep 5 KO
where « 6= 0, and Kk = Ky = =Ky (The last equality is true by virtue of the

cross-ply ratio being one.)

Since the warping of the laminated composite is caused by the thermal
coupling with no externally imposed loads, one can apply the basic material

properties in Equation (55) to Equation (43), and obtain

N; = N = 34.0hT
(81)
MT = MmT = -0.36 nPT
1 2
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Substituting these thermal forces and moments into Equation (36), one can

establish the curvature

T T
= ! 1 _ 1
“p = BNy +(Dy) - D) My
0.35 x 10‘6 (2.84 + 0.35) x 1070 2
= ————>—— x 34,0 hT - = 3 0.36 h°T
h h
(82)
_ -6
= 10,75 % 10~ T/h

For the particular test specimen, width £= 8.5 inches and thickness

h = 0. 18 inch; by substituting these data into Equation (80), one finds

0.0027 T

&3
1

mp

w 0.0022 T
ep

In Figure 7, Equation (83) and appropriate experimental measurements are
shown. A good agreement between theory and experiment is seen. This fur-
ther substantiates the effect of the thermal coupling as a direct result of

lamination.

In this section, the analysis of strength of cross-ply composites is
shown. The effect of thermal and mechanical coupling is outlined. It is seen
that the effective stress-strain relation has a '"knee' resulting from the degra-
dation of the constituent layers. After the ""knee, ' the laminated composite
becomes thermally and mechanically uncoupled but can carry an additional
load before the ultimate strength is reached. A method is outlined in this
section whereby the entire behavior of the cross-ply composite can be deter-
mined. Although the method and the experimental confirmation are limited to
uniaxial tension, the method can be extended to more general types of loading,
in terms of all six stress resultants and bending moments and arbitrary tem-
perature, in a straightforward manner. This will be described further in

Section 4.
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Angle-ply Composites

The angle-ply composite consists of n constituent layers of an ortho-
tropic material, as represented by a quasi-homogeneous unidirectional com-
posite, with alternating angles of orientation between layers. The odd layers
are oriented with an angle -@ from the l-axis of the reference coordinate, and
the even layers, +0. All layers have the same thickness. The lamination
parameters for the angle-ply composite, as in Reference 2, are the total num-

ber of layers n, and the lamination angle 8.

The effective stiffnesses of angle-ply composites made of glass fila-
ment and epoxy resin were accurately predicted by using the strength-of-
materials approach. 2 Using those stiffnesses, one can obtain the stress dis-
tribution in each constituent layer from Equation (39) as functions of stress
resultants, bending moments, and lamination temperature. Similar to the
method described for the cross-ply, the general yield condition of Equa-
tion (8), can then be applied to each layer. The ultimate strength of the angle-
ply can then be calculated. In the case of the angle-ply under uniaxial tension,
unlike the cross-ply, there is no "knee'' in the effective stress-strain relation.
This is explained by the fact that after the layers with positive or negative
orientation have failed, the remaining layers alone, although still intact, can-
not carry the existing load. Thus, failure of the entire laminated composite
occurs immediately after the initial failure of the positively or negatively
oriented layers. This is a peculiar behavior of angle-ply composites under

uniaxial loading.

Since the strength analysis of angle-ply composites requires the knowl-
edge of the coordinate transformation and its effect on material properties
and stress components, the standard coordinate transformation is repeated

here and its relevance to angle-ply composites is indicated.
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There are positive and negative rotations for coordinate transforma-

tion about the z-axis; they are represented symbolically by:

m n 0 m -n 0
™ = | m 0 " =| = m 0 (84)
0 0 1 0 0 1
or graphically:
' y y
y .
y
Xl
6
% x
7
Xl

Equation (6) and Figure 2 correspond to the positive rotation T+. The x-y
coordinates represent the original axes, and x'-y' the transformed axes.
Since all odd layers of an angle-ply composite are oriented with a negative
angle, the necessary transformation of the mechanical and thermal properties
of this system of layers into the reference coordinates 1-2 requires a positive
rotation T+; conversely, all even layers where the orientation is positive re-

quires a negative rotation T .
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To summarize the results of the transformation for angle-ply

composites:

ODD LAYERS EVEN LAYERS
2 v y 2

NS — :
L\FIBERS LﬁERS

Using T+ operation on Cij and Using T operation on Cij and
a., wherei, j=x, vy, s a, where i, j=x%, y, s

results in: _clé’ _C26’ +t16. results in: +C16’ +C26’ -a6.
When using the yield condition, When using the yield condition,
Equation (8), @ is negative; Equation (8), 0 is positive;

i.e., n = negative,. i.e., n = positive.

Stress transformation from 1-2 Stress transformation from 1-2
to x-y systems requires a T to x-y systems requires a T
operation; this corresponds to a operation; this corresponds to a
counterclockwise rotation of 26 clockwise rotation of 26 in Mohr's
in Mohr's Circle. Circle, as in Figure 2.

For the purpose of illustrating how a strength analysis of an angle-ply
can be carried out, a special case of a three-layer (n = 3) composite with a

lamination angle of 15 degrees is outlined in the following.

Using the basic material data listed in Equation (55), which repre-

sents a typical unidirectional glass filament-epoxy resin composite, one can
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obtain for the 15-degree lamination angle the following transformed data for

the constituent layers using the proper transformation listed previously,

7.342 x 106 psi

(y _ ~(2)
Ci1 = ©n

cl) = cld = o0.932x 10° psi
cl) = ¢ = 2.763x 10° psi
clV =-c® = 1129 % 10° psi
cl) =-cl) = _0.199x 10° psi )
célé) = cézé) = 1.519 x 10° psi
alld = al®) o 4029 107%/°F
a(zl) - a(zz) = 10.870 x 107%/°F
aél) = -a 22) = 1.975 x lO_é/oF

where superscripts 1 and 2 represent odd and even layers, respectively.
Depending on the directions of the rotation, Clé’ CZé’ and a, have different

signs, while the remaining material constants are all positive.

“The transformation equation for Cj;, which is a fourth rank tensor, can
be found, for example, on Page 12 of R.F.S. Herrman, An Introduction
of Applied Anisotropic Elasticity, Oxford University Press, 1961. The
transformations listed in this table correspond to a T operation. The
transformation equation for aj is listed in Equation (6) of this report.
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e

Using Equations (33) and (37) one can obtain, ’

0.14 x 10'6 in. /1b

1 —

Ay S
-6,

A'12 =-0.05 x10 in. /1b
Al = 0.38 x 10_6 in. /1b

22 ‘ :

(86)
-6 .

Al = 0.03 x 10 " in./lb

16
AL, = 0.005x 10°° in /1b

26 . .
Al = 0.67 x 10_6 in. /1b

66 i

From Equation (32), one can compute the equivalent thermal forces and
moments by assuming a constant lamination temperature T.
N? = 37.5 T 1b/in.
NZT = 33.2 T 1b/in.
(87)

N, = -1.2 T Ib/in.

T
M = 0, as expected for n = 3.

*The detail calculation and some typical data for glass-epoxy composites
are shown in the Appendix.
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Substituting the values in Equations (85) and (87) into Equation (39) and letting

N1 be the only nonzero load, one obtains,
0(11) = 0.97N, -0.447T
0(21) = -0.08 T (88)
o) - oo10n. -1.79T T
6 1
and
0(12) = 105N, +0.89 T
0(22) = 001N +0.16T (89)
oréz) = 0.20N; +3.58T

The yield condition of Equation (8) can be considerably simplified for this
particular angle-ply by letting p = 0 because the o, in both Equations (88)
and (89) is small in comparison with T Also using the strength values

listed in Equations (62) and (63), one obtained a simplified form for Equa-

tion (8) as

2 2 _ 2
A0'1+B 0106+C06 = X
where
(90)
A = m4+ 624 mzn2 + 1406 n4

- (1244 m°>n + 4386 mn>)

vsl
It

C = 625 mT + 4382 m®n® + 625 n?

“These shear stresses can properly be designated as the interlaminar
shear stresses which are induced by axial stress resultant N, and
lamination temperature T. The common usage of the interlaminar
shear in the filament winding industry referring to a particular test
method is entirely different from the shear stresses above.
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For 6= -15° (this applies to the odd layers),

A =46.20, B =363.91, C=821.00 (91)

For 6 = +15° (this applies to the even layers),
P

A =46.20, B = -363.91, C =821.00 (92)

Substituting Equ.ations (91) and (88) into (90), one can solve for the maximum

N. for the outer layers,

1
2 2 2 _
16.12 N{ - 359.3 N; T +2938 T - X“ = 0 (93)
or
1"1 =11.14 T + 37, 400 {94)
For a lamination temperature at 270°F, T = —ZOOOF,
Nl = 35,200 psi (95)

Similarly, substituting Equations (92) and (89) into (90), one can solve for the

maximum N1 for the inner layers,

2 2

?.52N21'-148.3N1T+9429T -X“=0 (96)
N, = 9.87 T + 54, 600

for T = -200,
N, = 52,600 psi (97)

Thus, the outer layers will fail first for having a lower Nl’ and in fact, the
ultimate load of this composite will be 35, 200 psi because the inner layer

cannot carry the load alone after the outer layers have failed.
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Similar calculations, as described from Equations (93) through (97),
are repeated for other lamination angles and the theoretical predictions
together with the measured data are shown in Figure 8. Also included in
Figure 8 is the initial effective stiffness of the angle-ply composite. For
both the strength and the stiffness, excellent agreement exists between the
theory and experimental observation. For intermediate lamination angles,
nonlinear stress-strain relation is observed. The actual ultimate strain at
the failure stress is about 2 to 3 times larger than that computed from the
tangent modulus. It is interesting to compare the strength of unidirectional
composites, as shown in Figure 4, with the angle-ply, in Figure 8. Up to
45 degrees, the angle-ply has up to 50 percent higher strength than the uni-
directional. For angles larger than 45 degrees, the angle-ply becomes
weaker than the unidirectional. These differences in strength can be traced
directly to the mechanical and thermal interactions, because of the non-

vanishing C16 and 626’ and T, respectively.

In order to facilitate the strength analysis of glass-epoxy angle-ply
composites, composite moduli and coefficients for stress components are
listed in the Appendix for n = 2 and 3 and @ =5, 10, 15, 30, 45, 60, and
75 degrees,

In conclusion, a method for determining the strength of angle-ply
composites has been formulated. This method can be extended to the most
complicated types of loading with all six components of stress resultants and
bending moments and arbitrary temperature distribution across the thickness
of the composite. Differing from the case of cross-ply composites, the
angle-ply cannot carry additional uniaxial load after failure has initiated in
one system of layers. Consequently, no discontinuity in the slope of the
effective stress-strain relation is predicted by the present strength analysis,
nor observed experimentally. For this reason, no subsequent degradation of

the constituent layers has been investigated.
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SECTION 4

CONCLUSIONS

The present report outlines a method of strength analysis for both
quasi-homogeneous and laminated composites. This method requires the
experimental determination of some basic material properties, like those
listed in Equations {55) and (62). As stated in the Introduction (Section 1), a
clear distinction is made between the structures and materials research on
composite materials. The present report only covers the structures aspect
of strength. The materials aspect, on the other hand, is to be investigated

in the future.

It is important to recognize two aspects of the results of the present
investigation: (1) the strength of a nonisotropic material requires three
strength characteristics, X, Y, and S; (2) for fiber-reinforced composites
such as the glass-epoxy composite, the strength values thus far must be
experimentally determined. Even the case of the axial strength X cannot be
predicted from the constituent properties; e.g., the fiber strength and volume
ratio, with confidence. The fundamental data of X being 150 ksi for unidirec-
tional glass-epoxy composites, together with Y and S listed in Equation (62),
has been shown to be significant in the transformation of strength of a quasi-
homogeneous composite (Figure 4), and the strength characteristics of
cross-ply and angle-ply composites (Figures 6 and 8, respectively). Insofar
as the structures aspect of strength is concerned, it is more important to
know the correct value of the axial strength of 150 ksi than to be obsessed by
the apparent loss of the theoretical strength. The latter strength, based on
netting analysis, is predicted by using the virgin strength of glass (400 ksi)
corrected by its volume ratio (66 percent), the result being 266 ksi. What-

ever the reason or reasons for the loss of the theoretical strength may be, it
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is more important to recognize that only a strength of 150 ksi has been real-
ized under a highly idealized condition, such as the test method used for the
present program; in all probability a greater loss of strength will exist in
actual structures. Since the application of composite materials is primarily
in structures, it is more significant to know what one has at his disposal

(that X = 150 ksi) than what he does not have (that X should have been 266 ksi).

The present investigation also shows the importance of the transverse
and shear strengths, Y and S, respectively. So long as structures are, in
general, subjected to more complex loading than uniaxial, loaded along the
fiber axis, Y and S should be treated with equal respect as the axial strength
X. In fact, the relatively low value of the transverse strength is directly
responsible for the '"knee'' in the cross-ply composite, the presence of which
is detrimental to the structure for being less stiff for load beyond the "knee"
and for being porous resulting from cracks transverse to the fibers. Thus,
the improvement of fiber-reinforced composites may very well depend more

on the upgrading of the transverse and shear strengths than the axial strength.

The method of strength analysis outlined in this report can be general-
ized to loadings other than uniaxial tension. The coefficients for the stress
components in terms of all the stress resultants and bending moments, to-
gether with the lamination temperature, are listed in the Appendix for typical
glass-epoxy composites. For any given combination of Ni’ Mi’ and T, one
can determine the stress components within each constituent layer. One can
go to the tables in the Appendix and obtain directly the coefficients for each
Ni and IvIi and T, derived from the expanded form of Equation (39). The
effects of thermal forces N;r and thermal moments M;[‘ are lumped in the

"coefficients of temperature. "

There are numerous limitations to the present theory of strength, the

most important ones are listed as follows:

(1) It is assumed that the tensile and compressive stiff-
nesses and strengths are equal. The present theory
can be modified to take into account different tensile
and compressive properties by following, for

example, the method described in References 6 and 7.



(2) The composite material is assumed to be linear
elastic up to the ultimate failure. For glass-epoxy
composites, this assumption has been found to be
reasonable with the exception of the unidirectional
and angle-ply composites with intermediate angles

of fiber orientations, say between 30 and 60 degrees.

(3) In the case of cross-ply composites, the piece-wise
linear stress-strain relation is intended to describe
the loading condition only. The behavior of the lam-
inated composite during unloading and reloading has

not been investigated.

(4) The degradation of angle-ply composites because of
cracks transverse to the fibers has not been investi-
gated. It is quite conceivable that the composite can
carry additional load after initial degradation under

more complex loading such as the biaxial stress.

Recommendations for future work include the following:

(a) The contribution of the constituents' properties to
the basic strength characteristics X, Y, and S. This
will provide a basis to establish guidelines for the

rational design of composite materials.

(b) More extensive experimental verification of the
strength of unidirectional and laminated composites
under loading conditions other than uniaxial tension.
The test materials should include other combinations

of constituents than glass-epoxy.

(c) The present framework of research (combined struc-
tures and materials research) should be extended to
include critical problems of nonelastic behavior,

creep, and fatigue of composite materials.
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It is believed that, with the foregoing information of the strength
characteristics of composite materials, an improvement has been made in
the basic understanding of the structural behavior of composites. This added
knowledge will provide a better basis of design and utilization of composites.
It is hoped that additional researchers with interests in structures and mate-
rials will begin to contribute to this new area of research. With rapidly
advancing technology of new constituent materials and manufacturing proc-
esses, a rational basis of materials design is urgently needed. This report
may be considered as a typical example of the work still remaining in the

field of composite materials.
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APPENDIX

MATERIAL COEFFICIENTS OF GLASS-EPOXY COMPOSITES

The purpose of this Appendix is to show the method of stress analysis
of a laminated composite, and to list material coefficients of a typical glass-
epoxy composite. The coefficients are intended to reduce the burden of com-
putation in the analyses of stress, strain, and strength. Since most mathe-
matical relations required for the present work have already been covered in
this report, they will only be cited by their equation numbers here in the

Appendix.

In a laminated composite, the variables of interests are, under the
strength-of-materials approach, the stress resultants N, bending moments
M, in-plane strains © and curvatures «. In place of the stress-strain
relation, these four quantities are linked by relations shown in Equations (34),
(35), and (36). (Thermal forces and moments are automatically included
here.) As mentioned in Reference 2, a laminated composite is described by,
at most, 18 independent elastic moduli, six each in the A, B, and D matrices,
which reduce to two independent moduli for quasi-homogeneous isotropic
material. Thus, knowing the 18 moduli for a given laminated composite, one
can solve for two of the unknown variables if the other two are given. In gen-
eral, N and M are given, then using Equation (36) and A', B' and D' matrices,
one can find the in-plane strain and curvature. In special cases, such as a
pressurized cylindrical shell, in addition to the known stress resultants which
are the membrane stresses, the curvature by virtue of symmetry must be
zero. Thus, Equation (35) is the appropriate relation. Figure 17 in Refer-

ence 2, for example, reflects the use of A%, B3, and H* and D* matrices.

59



The stress in each layer is determined from knowing the in-plane
strain and curvature for a laminated composite and the stiffness matrix Cij of
the particular layer. Equations (38) and (39) show the precise relations. As
governed by the original assumption of the nondeformable normals, the strain

is linear, and the stress, piece-wise linear, across the thickness of the lam-

inated composite.

Unfortunately the computation of the A, B, and D matrices and their
inversions is difficult for hand computation. The stress equation, such as
Equation (39), involves not only the prime matrices A', B' and D', but also
much arithmetic operation. A digital program has been prepared to compute

the following quantities for a general laminated composite:

(1) Composite moduli A, B, D, A%, B%, H*, D%, A', B',
and D'.

(2) Thermal forces and moments per Equation (32) for a

constant temperature T across the laminated composite.

(3) Coefficients for each Ni’ Mi’ and T in the stress rela-
tion, Equation (39). Since temperature is assumed to be

T

constant, the contributions of NiT and Mi and aiT to the

stress component are lumped into one term designated

as '"the coefficients of temperature. '’

The coefficients at the top and bottom of each constituent layer are
shown. The stress at any location within a layer can be obtained by a simple

linear interpolation.

The information just described is computed and tabulated for typical
glass-epoxy cross-ply and angle-ply composites. Also included is the
degraded case of cross-ply composites. The exact nature of the degradation,
as explained in the Subsection entitled Cross-ply Composites, consists of

having cracks developed transverse to the fibers in all constituent layers.
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The tables are arranged as follows:

(1) Cross-ply Composites
Case 1 (all layers intact) pp. 62-71

(2) Cross-ply Composites
Case 2 (all layers degraded) pp. 72-81

{3) Angle-ply Composites
Case 1 (all layers intact) pp. 82-95

All material coefficients are computed per unit thickness of the lami-

nate. Let h be the actual thickness of the laminate; the material coefficients

as listed in the table must be corrected as follows:

hA, h’B, h°D

A*/n, BB®, nH', n’D"

A'/h, B'/b%, D'/n
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CROSS-PLY

STIFFNESS MATRIX (C})
(1046 LB./IN.5C.)

M=0.2 CASE 1 (ALL LAYERS INTACT})

2 LAYERS {(N22)

== 000 LAYERS -~
THERMAL EXPANSION FATRIXK (ALPHA)
(IN./IN./DEG.F.)

1.9660 0.6638 0. ALPHA 1 = 3,5000
0.6638 2.6550 0. ALPHA 2 = 11.4000
0. 0. 1.2500 ALPHA & = 0.

STIFFNESS PATRIX (C)
{10+6 LB./IN.SQ.)

== EVEN LAYERS --
THERMAL EXPANSION MATRIX
(IN./IN./DEG.F.}

(ALPHAY

2.65%0 0.6638 0. ALPHA 1 = 11,4000
C.6638 7.9660 0. ALPHA 2 = 3,5000
0. 0. 1.25C0 ALPHA 6 = O,
A As A PRIME THERMAL FORCE
{1C+¢ LB./IN.) (10-6 IN./LB.) {10-6 IN./LB.} (LB./INL./DEG.F.)
3.5403 C.6638 0. 0.2875 =~0.0270 0. 0.3209 -0.0294 0. N1-T = 33,0667
0.6638 7.0807 0. -0.0270 0.1438 0. -0.0294 0.1496 0. N2-T = 34.9719
C. C. 1.2500 0. 0. 0.8C00 0. Q. 0.8000 N6-T = 0.
e Re 8 PRIME THERMAL MOMENT
(1C+6 IN.) {1C6+0 IN.} (10-6 L/LE.) (LB./DEG.F.)
~C.3689 C. 0. 0.1061 €.0099 0. 0.3159 -0.0130 0. Hl1-T = -0.1985
0. €.3689 0. -0.£099 -0.0530 0. -0.0130 ~-0.1072 0. M2-T = 0.1985
0. C. 0. 0. 0. 0. 0. 0. 0. M6-Y = O,
He
{1C+0 INJ)
-0.1C6! 0.0C99 0.
-0.CC99 €.0530 0.
0. C. 0.
c De D PRIME
(10¢6 LE.IN.) (1046 LB.ING) (10-6 1/LB.IN.}
Cc.377C C.0553 0. 0.337s €.0516 De 3.0C83 -0.318) 0.
0.0553 0.5081 o. 0.0516 C.4885 0. -0.3181 2.08Cs 0.
0. 0. 0.1042 0. C. 0.1042 0. 0. 9.6000
L4 STRESS COEF. OF Nl CCEF. OF N2 COEF. OF N6 COEF, OF M1 CCEF. OF M2 COEF., OF M6 COEF, GF TEMP,
tING) COMPCNENT {171IN.) {171IN.) (171IN.) (1/IN.5Q.) 11/1N.5Q.) (17IN.SQ.) tLB/IN.SQ/F.)
== LAYER 1 --
-0.5000 SIGRA | 1.2828 =0.0474 0. -9.3689 0.4012 0. 7.2505
2 0.0474 0.5242 0. -0.4012 ~2.9496 0. ~13.1967
6 0. 0. 1.0000 C. [N -6.C000 0.
-0.3333 SIGMA ] 1.7008 -D.0766 0. -5.4092 0.2091 0. 19.2290
2 0.0768 0.4753 0. -0.2091 -2.0640 0. -13.803)
6 0. C. 1.0000 C. Q. -3.9996 0.
~= LAYER 2 --
-0.3333 S1GMA ) 0.5558 0.0565 0. -1.7617 ~0.284¢6 0. “1l.9442
2 ~0.0565 1.4594 0. C.2848 =6.3161 C. 12.4112
6 0. 0. 1.0000 0. 0. -3.9996 0.
0.500C SIGFA 1 1.2474 -0.0317 0. 4.7180 0.1626 O. 6.6470
2 0.0317 0.7408 0. -0.1626 T.3191 Oe -7.0099
6 0. 0. 1.0000 0. 0. 6.0000 0.

62



CROSS-PLY

STIFFNESS MATRIX {
110¢6 LB./7IN.5Q.)

7.9660 0.6638
0.6638 2.6550
0. 0.

HeD, 2

CASE 1 (ALL LAYERS INTACT)
3 LAYERS {N=3)

—= 0DD LAYERS --

<)

0.
0.
1.2500

THERMAL EXPANSION MATRIX
. (INJ/1N./DEG.F.)

ALPHA 1 = 3.5000
ALPHA 2 = 11,4000
ALPHA & = O,

=~ EVEN LAYERS --

STIFFNESS MATRIX (C)

11046 LP./IN.SQ.)

26550 0.6638 0.
0.5638 T.9660 0.
0. 0. 1.2500
A Ae
(10+6 LB./IN.) (10-6 IN./LB.)
3,5401 C.6638 0. 0.2875 -0.0270 0.
0.6638 T.08C9 0. -0.0270 0.1438 0.
0. 0. 1.2%00 0. C. 0.
8 Be
(10+8 IN.) t110+0 IN.}
0. 0. 0. 0. C. 0.
0. Q. 0. 0. C. 0.
0. 0. 0. 0. C. 0.
He
{10+0 1IN}
0. 0. 0.
0. 0. 0.
0. C. 0.
c D=
(1006 LBLIN,) {10+6 LB.IN,)
0.4077 0.C553 0. 0.4077 €.0553 0.
0.0553 0.4774 0. 0.0553 C.aT74 0.
0. C. 0.1042 0. 0. 0.
z STRESS COEF. OF N1 CCEF, OF N2
tING) COMPONENT (17IN.) (1/71INq)
~-0.5000 SIGMA 1 2.272¢ -0,1193
2 0.1193 0.3638
6 0. 0.
-0.4167 SIGMA 1 2.2726 -0.1193
2 0.1193 0.3638
L] 0. 0.
-0.4187 SIGMA 1 0.7455 0.0239
2 -0.0239 1.1272
L] 0. 0.
0.4167 SIGrA 1 0.7455 0.0239
2 -0.0239 1.1272
L] 0. 0.
0.4167 SIGMA | 2.2726 -0.1193
2 0.119) 0.3638
L] 0. C.
0.5C0C SIGrA 1 2.2726 ~0.1193
2 0.1193 0.3638
& 0. 0.

THERMAL EXPANSION PATRIX
{INo/INJ/DEG.F.)

ALPHA 1 = 11.40C0
ALPHA 2 = 13,5000
ALPHA 6 = 0.

{ALPHA)

{ALPHA)

A PRIME
{10-6 IN./LB.)
0.2875 -0.0270 0.
-0.0270 0.1438 0.
8C00 0. 0. 0.8000
8 PRIME
{10~-6 1/7L8.)
0. 0. 0.
0. 0. 0.
0. 0. 0.
O PRINME
110-6 1/08.1IN.)
2.4919 -0.,28886 0.
-0.2808 2.1282 0.
1042 0. 0. 9.6000
COEF. OF N6 COEF. OF M1 COEF. OF M2
t171N,) 11/1N.5Q.) t17IN.SQ.)
-— LAYER 1 --
0. ~9.8296 0.4438
0. -0.4438 -2.7294
1.0000 0. 0.
0. -8.1914 0.3698
0. -0.3698 -2.2745
1.0000 0. 0.
~= LAYER 2 --
0. -2.67¢9 -0.2692
0. 0.2692 -6.9841
1.0000 0. 0.
0. 2.6769 0.2692
0. -0.2692 6.9841
1.0000 0. 0.
== LAYER 3 -~
0. 8.1914 ~0.3698
0. 0.3698 2.2745
1.0000 0. 0.
[ 2 9.08296 ~0.4438
0. 0.4438 2.7294
1.0000 O. [ 2%

THERMAL FORCE
(LB./IN./DEG,F.)

N1-1 = 33,0866
N2-T = 34.9720
Ne-T = 0.

THERMAL MQMENT
{LB./DEG.F.)

M1-T = O.
M2-T = 0.
m6-T = O,

COEF. OF M6 COEF. OF TE!
{17IN.SQ.) (LB/IN.SQ/F
0. 35,5257
0. -15.9238

-6.0000 0.
0. 35.5257
C. -15.923e
-5.C000 0.
0. ~7.1048
0. 3.1846
-5.0000 0.
0. ~T.1048
0. 3.1846
5.0000 0.
0. 35.5257
0. -15.9238
5.C000 0.
0. 3%.5257
Q0. -15.9238
6.0000 0.
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CROSS-PLY H=0.4

STIFFNESS PATRIX (C)
(10¢6 LB./1NH.SQ.}

T7.9660 0.6638 0.
0.6638 2.6550 0.
Q. 0. 1.2500

CASE 1 (ALL LAY
2 LAYERS {N=2)

= ODD LAYERS -~

== EVEN LAYERS ==

STIFFNESS MATRIX (C)
(10+46 LB./IN.SQ.)

ERS INTACT)

THERMAL EXPANSION MATRIX
[IN./IN./06G.F.)

ALPHA 1 = 3.5000
ALPHA 2 = 11.4000
ALPHA 6 = 0.

THERMAL EXPANSION MATRIX
(IN./IN/DEG.F.}

(ALPHA)

(ALPHA)

2.6550 0.6638 0. ALPHA 1 = 11.4000
0.6638 T7.9660 Q. ALPHA 2 = 3.5000
0. 0. 1.2500 ALPHA 6 = 0.
[} Ae A PRINE THERMAL FQRCE
11046 LB, /ING) {10-& IN./LB.)} (10-6 INJ/LB.) (LB./IN./DEG.F.)
4.1724 0.6638 0. 0,2437 =~-0.02%51 0. 0.2930 -0.0293 0. N1-T » 33,4068
0.6632 6.4486 0. ~0.0251 0.1577 0. -0.0293 0.17%3 0. N2-T = 34,6318
0. C. 1.2500 0. O. 0.8C00 0. Q. 0.8000 Né-T = 0.
B 8e 0 PRINE THERMAL MOMENT
(10¢6 IN.) (10+0 IN.) 110-6 1/7L8.) (LB./DEG.F.)
-0.5419 Ce. 0. 0,.1320 0.0136 0. 0.3749 -0.0106 0. M1-T = -0,2916
0. C.5419 0. =0.0136 -~C.08%54 0. -0.0106 -0.20%3 0. M2-T = 0.2916
0. C. 0. 0. €. 0. 0. 0. Ge né-¥ = 0.
He
t1C+0 IN.)
-0.132¢C C.0136 0.
=-0.0136 0.0854 0.
0. C. 0.
D o» D PRIME
11046 LB.IN.) (1046 LB.IN.) (10-6 1/LB.ING}
0.4251 0,C553 0. 0.353¢ C.0480 0. 2.8736 <-0.333) 0.
0.0553 0.46C0 0. 0.0480 0.4137 0. =0.3331 2.4560 0.
0. c. 0.1042 0. 0. 0.1042 0. 0. 9.6000
L4 STRESS COEF. OF Nl CCEF. OF N2 COEF. OF N6 COEF. OF M1 COEF. OF M2 COEF. OF mé6 COEF. OF TENP,
tING) COMPONENT (1/1IN.) (1/71N.) {171IN.) {171IN.5Q.) (1/71N.5Q.) {1/1IN.5Q.) {LB/IN.SQ/F,)
== LAYER 1 -~
-0.5000 SIGeA 1 0.82%0 ~0.0064 0. -8.3553 0.2908 0. -5.587¢6
2 0.0064 0.7222 0. -0.2908 -3.7019 0. ~8.3409
& 0. 0. 1.0000 C. 0. -6.0000 0.
-0.2143 SIGMA L 1.6761 -0.0695 0. -1.0786 -0.0015 0. 10.6922
2 0.0695 0,5644 G. 0.0015 -l.9021 0. -11.2774
6 0. 0. 1.0000 0. - 0. -2.3716 0.
== LAYER 2 --
=0.2143 SIGMA 1 0.5467 0.0739 0. -0.5992 =0.3243 Q. ~11.6855
2 -0.0739 1.7293 0. 0.3243 ~-5.7878 Oe 20.1088
6 0. 0. 1.0000 0. 0. -2.5716 0.
0.5C¢00 SIGrA 1 1.2527 ~0.0435 0. 4.6925 0.2085% 0. 8.4440
2 0.0435 0.5561 0. -0.2005 8.029) 0. ~12.3340
6 0. 0. 1.0000 0. 0. 6.0000 0.
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CROSS-PLY

N=0.4

STIFFNESS MATRIX (C)
(1046 LB./IN.5Q.)

T.9660
0.6638
Q.

0.6630
2.6350

0.
0.
1.23%00

STIFFNESS MATRIX (C)
(1046 LB8./1IN.5Q.)

2.6350
0.6638
0.

[
(1046 LB./IN.)

4.1725 0.,6638 Q.
0.6638 64405 0.
9. 0. 1.2500

0.6638
T.9660

0.’
0.
1.2500

CASE 1 (ALL LAYERS INTACT)
3 LAYERS {(N=3)

~=— 0ODD LAYERS -~

THERMAL EXPANSION MATRIX (ALPHA)
11N/ IN./DEG.F.}

ALPHA 1 =

3.5000

ALPHA 2 = 11.4000

ALPHA &6 =

== EVEN LAYERS ==

C.

THERMAL EXPANSION MATRIX (ALPHA)
LING/INL/DEG.F.)

ALPHA 1 = 11,4000

ALPHA 2 =
ALPHA & =

3.5000
0.

THERMAL FORCE
(LB./IN./DEG.F.)
N1-T a 33.4089
N2-T » 34,6317
N6~-T = 0.

THERMAL MOMENY

]
{1C+6 IN.)

0.
o.

0. o.
0. 0.
a. 0.

c
11046 LB.IN.)

0.502%
0.0553
0.

T
{1ING)
-0.5000

-0.3571

-0.3571

0.3571

0.3571

0.5C00

€.0553 0.
0.3825 0.
0. 0.1042

STRESS

COPPONENT

SIGrA

SIGMA

SIGMA

SIGrA

SIGKMA

SIGHA

oONw

-

An A PRINME
110-6 IN./LB.) 110-6 IN./LB.)
0.,2437 =C.0251 0. 0.2437 -0.0251 0.
-0.0251 0.1577 0. -0.0251 0.1577 0.
0. 0. 0.8000 0. Q. 0.8000
Be 8 PRIME
11040 INJ) (10-6 L/7LB.}
0. C. 0. 0. 0. 0.
0. 0. 0. 0. Q. 0.
0. Q. 0. 0. 0. 0.
He
(10+0 IN.)
0. 0. 0.
0. C. 0.
0. 0. 0.
De D PRIFE
(10+6 LB.IN.) (10~6 1/1B.IN.}
0.5025 C.0553 0. 2.0221 -0.2924 0.
0.0553 0.382% 0. -0.2924 2.6564 0.

0. 0. 0.1042 o, 0. 9.6000
COEF, OF N1 CCEF. OF N2 COEF. OF N6 COEF. OF P1 COEF., OF M2
(1/71m.) (171N.) {1/1N.) (1718.5Q.) {171N.5Q.)
== LAYER 1 -~
1.9243 ~0.0951 0. -T7.9568 0.2830
0.0951 0.4019 0. -0.2830 =3.4293

0. 0. 1.0000 0. 0.
1.924) ~0.0951 0. -5.6834 0.2021
0.0951 0.4019 0. -0.2021 =2.4495
0. 0. 1.0000 C. 0.
== LAYER 2 -~
0.6302 0.0381 0. -1.8480 -0.35258
-0.0381 l.2392 0. 0.352% -T.4881
0. 0. 1.0000 0. 0.
0.6303 0.0381 0. 1.8480 0.3%2%
-0.0381 1.2392 0. -0.3525 T.4001
0. 0. 1.0000 0. 0.
~= LAYER 3 --
1.924) -0.0951 0. 5.6834 -0.2021
0.0951 0.4019 0. 0.2021 2.449%
0. 0. 1.0000 0. 0.
1.9243 -0.0951 0. 7.9568 -0.2830
0.0951 0.4019 0. 0.2830 3,4293
0. Q. 1.0000 C. 0.

{LB./DEG.F.)}

"l-7 =
H2-T =
Ho~-T =

COEF. OF m6
{1/1N.50Q.)

‘0.
0.
-6.00C0
0.
0.
-4.2857
0.
e.
-4.2057
0.
0.
4.2057
0.
0.
4.2857
0.

0.
6.C000

0.
0.
0.

COEF. OF TEmP.,
{LB/IN.SQ/F .}

25,5422
-135.492)
0.

25.5422
~15.4923
0.

~10.2172
6.1971
0.

-10.2172
6.1971
0.

25.5422
~15.4923
0.

25.5422
~15.4923
0.
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CRCSS-PLY

STIFFNESS FATRIX (C)
(10+6 LB./IN.SQ.)

M=1.0
2 LAYERS {(N=2)

-~ DDD LAYERS ==

CASE 1 {ALL LAYERS INTACT)

THERMAL EXPANSION BATRIX (ALPHA)
CINJ/INJ/DEG.F. )}

T.9660 0.6638 0. ALPHA 1 = 13,5000
C.6638 2.6550 0. ALPHA 2 = 11,4000
0. 0. 1.2500 ALPHA &6 = O,
-- EVEN LAYERS -=
STIFFNESS MATRIX (C) THERMAL EXPANSICN MATRIX {ALPHA)
(1046 LB./IN.SG.) LING/IN./CEG.F.}
2.6550 0.6638 0. ALPHA 1 = 11.4000
C.6638 7.9660 0. ALPHA 2 = 3.5000
0. 0. 1.2500 ALPHA 6 = 0.
A Ae A PRIME THERMAL FQORCE
(1C+¢6 LBLZING) {10-¢ IN./LB.) t1c-6 IN./LB.) (LB./IN./DEG.F.}
5.3105% C.c638 0. 0.1913 -0.0239 O. 0.2363 -0.0295 0. N1-T = 34,0193
0.6638 5.3105 0. -0.0239 €.1913 0. -0.0295 C.2363 0. N2-T = 34.0193
0. C. 1.25¢C0 0. [ 0.8C00 C. Q. 0.8000 N6-T = 0.
E Be B PRIME THERMAL MCMENT
(10+6 IN.) {10+C IN.) {1C-6 1/L8.) {LB./DEG.F.)
-0.6639 0. 0. 0.1270 €.0159 0. 0.3545 0.0000 0. M1-T = -0.3573
0. C.6639 0. -0.0159 =C.1270 0. 0.0000 -0.3545 0. M2-T = 0.3573
0. Ce. 0. 0. C. C. 0. C. Q. Me-T = O,
He
(1C+0 IN.}
~0.1270 €.0159 C.
~0.0159 c.1270 0.
0. C. 0.
c D= D PRIME
(10+¢6 LB.IN.) {10¢6 LB.IN.) 110-6 1/LB.IN.)
0.4425 C.C553 0. 0.3582 €.0448 0. 2.8358 -0.3545 0.
0.05%3 Caekb25 0. 0.0448 0.3582 0. -0,3545 2.8358 0.
0. C. 0.1042 0. C. 0.1C42 0. 0. 9.6000
4 STRESS COEF. OF N1 CCEF. OF N2 COEF. CF N& CCEF. GF M1 CCEF. CF M2 COEF, OF w6 COEF, OF TEMP,
{IN.) COFPONENT (171N.) {1/71Ns) (1/1N.) (171IN.SQ.) {1/1N.5Q.) (171N.SQ. ) (LB/IN.SQ/F.}
=— LAYER 1 -~
-0.5C00 SIGMA 1 0.4509 0.0392 0. -8.3533 0.2352 0. -15.7070
2 -0.0392 1.0784 0. -0.2353 -4.5881 0. 1.2C715
o 0. Q. 1.000C 0. 0. -6.C0C0 0.
0. SIGMA 1 1.8629 ~0.C784 0. 2.8240 ~0.2353 0. 24,1643
2 0.0784 0.6078 0. 0.2353 -0.9412 C. -9.6648
6 0. O. 1.000¢C 0. 0. 0. 0.
-~ LAYER 2 --
0. SIGMA 1 0.6078 0.078% 0. 0.94612 -0.2353 [ -9.6648
2 -0.0784 1.8629 0. C.2353 ~2.824C 0. 24,1643
] 0. 0. 1.0000 0. 0. 0. O.
0.500C SIGrA 1 1.0784 -0.0392 0. 4.58R1 0.2351 0. 1.2075
2 0.0392 0.4509 0. ~C.23%3 843533 0. -15.7070
6 Q. Q. 1.0000 0. 0. 6.,0000 0.
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CROSS-PLY Mal,0 CASE 1 (ALL LAYERS INFVACT)
3 LAYERS (N=3)

-= 0DD LAYERS --

STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA}
(10+¢6 LB./IN.SQ.} {IN./IN./DEG.F.)
7.9660 0.6630 0. ALPHA 1 = 13,3000
G.6638 2.6550 0. ALPHA 2 = 11.4000
0. 0. 1.2500 ALPHA 6 = 0.
—— EVEN LAYERS -=
STIFFNESS FATRIX (C) THERMAL EXPANSION MATRIX (ALPHA}
11046 LB./IN.SQ.) {IN./IN./DEG.F.)
2.6550 0.6638 G. ALPHA 1 = 11.4000
Q.6638 7.9¢60 0. ALPHA 2 = 3,5000
0. 0. 1.2500 ALPHA 6 = 0.

A Ae A PRINME THERMAL. FORCE
(1046 LB./ING) {10-6 IN./18.) (10-6 IN./LB.) (LB./IN./DEG.F.)
5.3105% 0.06380 C. 0.1912 =-C.0239 0. 0.1913 ~-0.0239 0. N1-T = 34,0192
0.6638 5.310% 0. -0.0239 C.1913 0. -0.0239 0.1913 Q. N2-T = 34,0193
O. C. 1.,2500 0. 0. 0.8C00 0. 0. 0.8000 N6-T = 0.
] [-14 8 PRIVE THERMAL MCMENTY
(1C+6 1IN.) (1C+0 IN.} (10-6 1/LB.) {LB./DEG,.F.)
0. C. 0. 0. 0. 0. 0. O. 0. M1-T = 0.
0. c. 0. 0. C. 0. 0. 0. 0. n2-7Y = 0,
0. 0. 0. 0. C. 0. 0. C. 0. M6-T = 0.

He
(1C+0 IN.)

0. C. 0.
0. C. O.
0. C. 0.
c De O PRIPE
(l0¢6 LB.ING) (1046 LB.IN.) {1C-6 1/LB.IN.)
0.6085 €.0553 0. 0.6C85 €.0553 0. 1.6738 ~-0.3340 0.
0.0553 0.2766 0. 0.0553 C.2766 0. -0.3348 3.6826 0.
0. C. 0.1042 0. C. 0.1C42 0. 0. 9.6000
z STRESS COEF. OF N1 CCEF. OF N2 COEF., OF N6 COEF. QF Ml COEF, OF M2 COEF. OF M6 COEF. OF TEmP
tIN) COMPUNENT (171N.) (171N (171N (1/1N.5C,.) (1/IN.SQ.) {171NSC.) (LB/INLSQ/F,)
== LAYER 1 --
-0.5C00 SIGrA ] 1.5080 -0.00633 0. -6.5556 0.1111 -8 13.6921
2 0.0635 0.4920 0. -0.1111 ~4.7T776 0. ~13.6921
6 0. 0. 1.0000 0. 0. -6.00C0 Oe
-0.250C SIGrA | 1.508C -0.0635 0. -3.27178 0.055¢ 0. 13.6921
2 0.0635 0.4920 0. -0.055%56 ~2.3088 Q. -13.6921
6 0. 0. 1.0000 0. 0. -3.0000 0.
== LAYER 2 ~--
-0.2500 SIGMA 1 0.4920 0.0635 0. -1.0554 ~0.3889 0. -13.6921
2 -0.0635 1.5080 0. 0.3089 ~T.2784 0. 13.6921
6 0. 0. 1.0000 Q. 0. -3.€000 0.
0.2%00 SIGMA 1 0.492C 0.0635 0. 1.0554 0.3809 0. -13.6921
2 -0.063% 1.5080 0. -0.3889 T.2704 0. 13.8921
6 0. 0. 1.0000 0. 0. 3,0000 0.
== LAYER 3 --
0.2500 SIGMA 1 1.5080 -0.0635 0. 3.2778 -0.0556 0. 13.46921
2 0.0635 0.4920 0. 0.0556¢6 2.3888 C. -13.6921
L] 0. 0. 1.0000 C. 0. 3.C000 0.
0.5000 SIGMA 1 1.5080 -0.0635% 0. 6.5556 =0.1111 0. 13.6921
2 0.0635 0.4920 0. c.1111 4.7176 C. -13.6921
] 0. 0. 1.0000 Ce 0. 6.C000 0.



CROSS-PLY

He2,0
2 LAYERS (N=2)

== 000 LAYERS -~

CASE 1 (ALL LAYERS INTACT)

STIFFNESS MATRIX {(C)
{1046 LB./IN.SQ.)

7.9660 0.6638
0.6638 2.6550
Q. 0.

STIFFNESS MATRIX (C}
{1046 LB./IN.SQ.)

0.
0.

1.2500

THERMAL EXPANSION MATRIX [ALPHA)}

== EVEN LAYERS -~

THERMAL EXPANSLION MATRIX

{IN/IN./DEG.F.)

ALPHA 1 = 13,5000
ALPHA 2 = 11.4000
ALPHA & = 0.

{IN./IN./DEG.F.}

{ALPHAY

2.6550 0.6638 0. ALPHA 1 = 11,4000
C.6638 7.9660 0. ALPHA 2 = 13,5000
0. 0. 1.25%00 ALPHA & » 0.
A A A PRIFE THERMAL FORCE
{10¢6 LB./IN.) {10~6 IN./LB.) 110-6 IN./LB,) {LB./INJ/DEG.F. )}
6.1958 0.6638 0. 0.164C -C.0246 0. 0.1879 -0.0293 a. N1-T = 34,4937
0.6638 4.4252 Q. -0.0240 0.2297 0. -0,0293 0.2815 0. N2-T = 33,3429
0. C. 1.2500 0. 0. o.8C00 0. Qe 0.8000 Né-T = 0.
& Bs B PRIFE THERMAL WOMENT
{10+¢ IN.) (1040 IN.) 110-6 1/18.) {LB./0EG.F.)
-C.5901 C. 0. 0.0968 0.0145 0. 0.2449 0.00087 a. Ml-T = =0,3175
O. 0.59C1 0. -0.0145 -0.1355 0. g.CC87 -0.3836 0. M2-T = 0.3175
0. C. C. C. 0. 0. 0. 0. 0. Me-T = 0.
Hs
(1C+0 IN.)
-0.096¢ C.0L45 0.
-0.0145 0.1355 0.
0. C. 0.
o 123 0 PRIME
(10+6 LB.IN.) 11046 LB.IN.) {1C-6 1/L8.1IN.)
0.4507 €.0553 0. 0.393¢ C.0467 0. 2.5809 =~-0.3405 [
0.0553 C.4343 0. 0.0467 0.3544 0. -0.340% 2.08668 Q.
[ C. 0.1042 0. 0. 0.1C42 0. 0. 9.6000
4 STRESS COEF. OF N1 CCEF. OF N2 COEF. OF N6 COEF. OF #1 COEF. QF M2 COEF. OF M6 COEF. OF
(ING) COMPCNENT (17IN.) (1/1N.} [RYA LIS t171IN.SQ.) (171IN.5Q.) (171IN.5C.) {LB71IN.SQ
== LAYER 1 --
-0.5C0C SIGrMA 1 0.4988 0.0460 0. ~08,2104 0.2191 C. ~14.0221
2 -0.0460 1.2343 0. -0.2191 -4.70%¢4 0. 5.8021
& 0. 0. 1.0000 C. 0. -6.,0000 0.
0.1667 SIGrA 1 1.8032 ~0.0777 0. 5.3460 -0.320% 0. 22.3463
2 0.0777 0.5592 0. 0.3205% 0.2185 0. -11.1842
L] 0. 0. 1.0000 0. 0. 2.0004 0.
== LAYER 2 --
0.10867 SIGrA 1 0.58206 0.0704 0. 1.7605 -0.0651 0. -10.5036
2 -0.0704 1.7148 0. 0.0651 0.7194 0. 19.850%
& 0. 0. 1.0000 0. 0. 2.0004 0.
0.5C0C SIGFA ] 0.8072 -0.00¢8 0. J.9691 0.2679 0. ~6.1474
2 0.0068 0.6983 o. -0.2679 8.2537 0. -9.0848
] 0. 0. 1.0000 0. [ 6.C0CO 0.
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CRCSS-PLY

STIFFNESS MATRIX (C)
(10+6 LB./IN.SQ.)

T.9660 0.6638 Q.
0.6638 2.6550 0.
0. 0. le

STIFFNESS MATRIX (C)
(10+6 LB./IN.5C.)

2.6550 0.6638 0.
0.6638 7.9660 0.
C. 0. 1.

M=2,0

2500

2500

CASE 1 (ALL LAYERS INTACT)

3 LAYERS (N=3}
~= 0DD LAYERS -~

~= EVEN LAYERS -=

THERMAL EXPANSION MATRIX
(IN./IN./DEG.F.)

ALPHA 1 =
ALPHA 2 = 11.4000
ALPHA 6 = 0.

THERMAL EXPANSION MATRIX
(IN./7IN./DBG.F.)

ALPHA 1 = 11,4000
ALPHA 2 = 3.5000
ALPHA 6 = G,

3.5000 -

(ALPHA)

(ALPHA)

A
1046 LB./IN,)

As

110-6 IN./LB.)

A
(16-¢

PRINME
IN,/LB.)

THERMAL FORCE
(L8./IN./DEG.F.)

6.1956 C.66238 0. 0.1640 =-C.0246 0. 0.1640 ~-0.0246 0. N1-T = 34,4956
0.6638 4.4254 0. -0.0246 0.2297 O. -0.0246 0.2297 0. N2-T = 33,5430
0. C. 1.2500 0. 0. 0.8000 0. 0. 0.8000 N6e-T = 0.
B8 Be B PRIME THERMAL MOMENT
{1C¢6 IN.) (1040 IN.) (10~-6 1/18.) (LB./DEG.F.}
0. 0. 0. 0. O. 0. 0. 0. 0. #1-7 = ~0.0000
0. C. 0. 0. 0. 0. 0. C. 0. mM2-7T = -0.0000
0. 0. 0. 0. 0. 0. 0. Q. 0. me-T = 0.
He
{1C+0 IN.)
0. [ 0.
0. 0. 0.
0. 0. 0.
] De 0 PRINME
(1046 LB.IN.) 110¢6 LB, IN.) 110-6 1/18.1IN.)
0.64T4 0.0553 0. 0.6474 C.0553 0. 1.5759 -0.3668 0.
0.0553 0.2376 0. 0.0553 C.2376 0. -0.36608 6.2934 0.
0. 0. 0.1042 0. 0. 0.1042 0. 0. 9.6000
2 STRESS COEF. OF Nl COEF. OF N2 CODEF. OF N6 COEF. OF 1 CCEF. OF M2 COEF. OF N6 COEF. OF TEMP.
(ING) COMPCNENT (1/IN.) (171N} (1/1N.) 11/1N.5Q.) (1/71N.5Q.) 11/71IN.5Q.) (LB/IN.SQ/F.)
== LAYER } -~
-0.5000 SIGMA 1 1.2904 -0.0436 0. -6.1550 0.0361 0. T7.6041
2 0.0436 0.5934 0. -0.0361 -5.5777 0. -11.1827
L] 0. C. 1.0000 C. 0. ~-6.0000 0.
-0.16617 SIGrA 1 1.2904 -0.0436 0. -2.0517 0.0120 0. 7.6041
2 0.0436 0.5934 0. -0.0120 ~1.8593 0. -11.1827
6 0. 0. 1.0000 C. 0. -2.C0C0 0.
-~ LAYER 2 --
~0.1667 SIGMA 1 0.4192 0.0871 0. -0.6568 -0.3127 0. -15.2077
2 -0.0871 1.8131 0. 0.3127 -5.6597 0. 22,3647
6 0. 0. 1.0000 O. O. ~2.0000 0.
0.1667 SIGHA 1 0.4192 0.0871 0. 0.6568 0.3127 0. -15.2077
2 -0.0871 1.8131 0. -G.3127 5.6597 0. 22,3647
6 0. 0. 1.0000 Q. 0. 2.0000 0.
== LAYER 3 --
0.1667 SIGFA 1 1.2904 -0.0436 0. 2.0517 -0.0120 Ce T.6041
2 0.0436 0.5934 0. 0.0120 1.859) 0. -1t.1827
& 0. 0. 1.0000 C. 0. 2.0000 0.
0.5C0C SIiGMA 1 1.2904 -0.0436 0. 6.1550 -0.0361 0. T.6041
2 0.0436 0.5934 0. 0.0361 5.5717 0. -11.1827
] 0. 0. 1.0000 0. 0. 6.0000 0.
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CROSS-PLY Ms4,0

2 LAYERS (N=2)

-=— 0DD LAYERS ~-=
STIFFNESS MATRIX {C)
11046 LB./IN.SQ.)

1.9660 0.6638 0.
0.6632 2.6550 0.
0. 0. 1.2500

=~ EVEN LAYERS -~-
STIFFNESS MATRIX (C)
11046 LB./IN.SQ.)

CASE 1 {ALL LAYERS INTACT)

THERMAL EXPANSION MATRIX (ALPHA)
(IN./IN./DEG.F.)

ALPHA 1 = 13,5000
ALPHA 2 = 11.4000
ALPHA 6 = 0.

THERMAL EXPANSION MATALX
(IN./IN./CEG.F,.)

{ALPHA)

2.6550 0.6638 0. ALPHA 1 = 11.4000
0.6638 T7.9660 0. ALPHA 2 = 3.5000
0. 0. 1.2500 ALPHA 6 = 0,
A As A PRIVE THERMAL FORCE
110+6 LB./IN.) 110-6 IN./LB.) (10-6 IN./LB.) (LB./IN./DEG.F.)
6.9038 0.£638 0. 0.1474 -0,0263 0. 0.1559 -0.0293 G. N1-T = 34,8767
0.6638 3.7172 0. -0.0263 0.2737 0. -0.0293 0.3130 0. N2-T = 33,1619
0. c. 1.2500 0. 0. 0.8C00 0. 0. 0.8000 N6-T = O,
e Be 8 PRIPE THERMAL MOMENT
{10+6 IN.) (1C+0 IN.) (10-6 1718.) {L8./DEG.F.)
-0.4245 C. 0. 0.0626 0.0112 0. 0.1336 0.0128 0. M1-T = -0.2288
0. 0.4249 0. ~0.0112 -0.1163 C. 0.C128 -0.3386 0. M2-7 = 0,2286
0. Q. Q. 0. 0. 0. 0. 0. 0. Me-T = 0.
He
(1040 IN.)
-0.0626 c.0112 0.
-0.0112 C.1163 0.
0. C. 0.
o D 0 PRIPE
(10+¢6 LBLIN.) (10+¢6 LB.IN,) 110-6 1/LB.IN.)
0.4903 0.6553. 0. 0.4637 C.0506 0. 2.1914 -0.3209 0.
0.0553 €.3947 Q. 0.0506 C.3453 0. -0.3209 2.9428 0.
0. C. 0.1042 0. C. 0.1C42 0. 0. 9.6000
14 STRESS COEF. OF N1 CGCEF, OF N2 (CDEF. OF N¢ COEF. OF M1 COEF. CF M2 COEF. OF M6 COEF. OF TEMP,
(IN.) COMFPONENT (1/71NG) {1/1IN.) {171ING) (1/71IN.5Q.) (171n.5Q.) (1/IN.5C.) ILB/IN.SO/F.)
~= LAYER 1 -~
~0.5C0C SIGrA 1 0.6859 0.0357 0. -7.5488 0.1786 C. ~8.578C
2 ~0.0357 1.25648 0. -C.1786 ~4.6906 0. 6.8102
] 0. 0. 1.0000 0. 0. -6.0000 0.
0.3C0C SIGMA ] 1.5443 -0.0625 0. 6.2461 -0.3035% C. 14.8407
2 0.0625 0.5443 0. €.3035 1.3894 C. ~12.1131
6 0. 0. 1.0c00 0. 0. 3.6000 0.
—= LAYER 2 --
0.3C00 SiGra 1 0.5034 0.0727 0. 2.0448 0.1397 0. ~13.0%680
2 -0.0727 1.6668 0. -0.1397 4.2795 0. 18.3017
& Q. Q. 1.0000 C. 0. 3.6C00 0.
0.5c00 SIGrA 1 0.5761 0.0346 0. 3.1659 0.3800 C. -11.9939
2 -0.0346 1.1290 0. -0.3600 8,9254 0. 2.9094
] 0. 0. 1.0000 [ 0. 6.0000 0.
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CRCSS-PLY

STIFFNESS PRATRIX (C)
(10¢¢ LB./IN.SC.)

T7.96460 0.6638 0.
0.6638 2.6550 0.
0. 0. 1.2500

STIFFNESS PATRIX {C)
(1046 L8./IN.5Q.)

Meh,

CASE 1 (ALL LAYERS INTACT)
3 LAYERS (N=3}

[}

== 00D LAYERS -~
THERFAL EXPANSION FATRIX {(ALPHA)
(1IN /IN./DEG.F. )

ALPHA 1 = 13,3000
ALPHA 2 = 11.4000
ALPHA & = O,

== EVEN LAYERS --
THERFAL EXPANSION FATRIX
(INo/IN./CEG.F.)

{ALPHA)

2.£550 0.6630 0. ALPHA 1 = 11,4000
0.6638 T.9660 0. ALPHA 2 = 13,5000
0. 0. 1.2500 ALPHA &6 = O,
A Ae A PRINME THERMAL FORCE
(1C+6 LB./IN.} {10-¢ IN./LB.) {10-6 INJ/LB.) (LB./7INJ/DEG.F.)
6.9034 C.60630 0. 0.1474 -0.0263 0. 0.1474 -0.0263 G H1=T = 34,8743
0.6638 3.7178 0. -0.0263 0.2737 0. -0.026) 0.2737 C. N2-T = 33,1621
0. c. 1.2500 0. C. 0.8C00 0. Ge 0.8C00 Ne-T = O,
] Be 8 PRIME THERMAL MOMENTY
(10+6 IN.) (1C+0 IN.) (10~6 1/74B.) (LB./0EG.F.}
-0.0000 0. 0. 0.0€00 C.0000 0. 0.0000 0.0000 0. M1-7 = -0.0000
0. 0.0000 0. -0.0000 -0.0000 0. 0.,0000 -0.0000 0. M2-7 = 0,0000
0. 0. 0. 0. C. 0. 0. 0. 0. ne-1 = 0.
He
(1040 IN.)
-0,0C0C 0.0000 0.
-0.Cg0C 0.0000 0.
0. C. 0.
o Oe O PRIFE
(1046 LE.IN.) (10¢6 LB.IN.) (10-6 1/0LB.IN.}
0.6603 0.0553 C. 0.6603 C.0553 0. 1.5464 -0.3003 0.
0.0553 0.2248 0. 0.0553 0.2243 0. -0.380% 4.5421 0.
0. 0. 0.1042 0. C. 0.1042 0. Q. 9.6000
[ STRESS COEF. OF N1 CQEF. OF N2 COEF. OF N¢ COEF. OF 1 CCEF. OF M2 COEF, OF »&6 COEF. OF TEMP,
{ING) COMPCNENT (1/7(N.) {1/71N.) (171IN.) {1/1IN.5Q.) {1/71N.50Q.) (17IN.5Q.) {L8/IN.SQ/F.)
== LAYER 1 --
-0.5000 SIGmMA 1 1.1566 ~0.0280 0. -6.0328 0.0081 0. 3,9620
2 0.0280 0.7092 0. -0.0081 -5.9035 0. ~8.0954
é 0. 0. 1.0000 Ce. 0. -6.00C0 0.
~0.1000 SIGrA L 1.156¢ -0.0280 0. ~1.2065 0.0016 0.
2 0.0280 0.7092 0. -0.0016 ~l.1808 Q.
L] 0. 0. 1.0000C C. 0. =1.2000
—= LAYER 2 ~=-
-0.1C0¢C SIGMA 1 0.3730 O.1118 0. -0.3033 -0.2005% 0. ~15.044)
2 ~0.1118 2.1628 0. 0.20C5 =3.5934 C. 32.373%0
6 0. 0. 1.0000 C. 0. -1.2000 0.
0.1c01} SIGrA 1 0.3738 c.1118 0. 0.3056 0.2006 0. =15,08443
2 ~0.1118 2.1627 0. ~C.2006 3.5952 0. 32.3729
L] 0. 0. 1.0000 0. 0. 1.2008 0.
== LAYER 3 -~
0.1¢01 S1GraA 1 1l.1566 -0.0280 0. 1.2075 -0.0016 0. 3.9630
2 0.028C 0.7092 0. 0.0016 l.1814 Q. -2.0974
L] 0. 0. 1.0000 0. 0. 1.2008 0.
0.5¢00 SIGrFA 1 1.1566 -0.0280 0. 6.0330 -0.0Co1 Q. 3.9637
2 0.028C 0.7091 0. o.coel 5.9033 Q. ~8.0907
L] 0. 0. t.0000 0. 0. 4.0000 0.
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CRJSS~-

PLY

‘Ms0.2

CASE 2 (ALL LAYERS DEGRADEJ)

2 LAYERS (N=2)

00D LAYSERS ==

(ALPHA)

STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX
(10+6 LB./IN.SQ,) (IN./IN./DEG.F,)
7.8000 " 0.0000 0. ALPHA 1 3 3.5000
6.no00 0.0000 0. ALPHA 2 = 11,4000
0. 04 0.0000 ALPHA 6 = O,
-~ IVEN LAYLRS --
STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
(10+6 LH./IN.S0U,? (IN./7IN./DEG.F,)
n.0000 0.0000 [ ALPHA 1 = 11.4000
0.0000 7.8000 J. ALPWA 2 = 3,5000
u. 0. 0.0000 ALPHA & = 0.
A ae A PRIME THERMAL FORCE
(10«6 _8.7IN.) (19-6 IN./LB.) €10-6 IN,/LB3? (LB./IN./DEG.F.)
1.3003  o0.U008 Q. 0,76491 -0,0000 O, 58.4172 -0.p000 O, N1=T = 4,5509
0.0000 6.,4997 a0, -0.0000 0.,153% 0. ~0.0000 0.1723 0, Ne-T & 22,7491
0. 0N 7.0000 0. 0. 0030,000) v, 0. 0000,0000 N6-T = 0
El ge B PRIME THENMAL MOMINT
(1045 1N,) (10+0 1IN,) (1u=6 1/L84) (LB./DEG.F,)
-6.5418 0. . 0.4166 0.0000 0, 138.3611 -0.0300 O, M1-T = -1,8981
. 0.>418 D, -0,0000 ~-0.0833 0, -0.0000 -0.2218 O, MZ-T 31,8563
0. 0. 0. 0. 0. 0. 0. 0. . Mo6-T = 0.
He
(10+0 IN.)
-0,4166 0.0000 0.
-0.0000 0.0633 0.
G, 0. 0.
U ue D PRIME
(10+6 LH.IN,) (10%6 Ld.IN.) €10-6 1/LR.IN.)
0.2287 0,0000 o, 0,0030 0.000u 0. 332.0801 -0,0000 O,
0.n000  0.,4213 0. 0,0000 0.3761 0, -0.0000 2,6588 O,
. a. 60,0000 0. e. 6.000a U, a. 0080, vnan
z STRISS COEF, OF N1 (CULF..OF N2 Z9:IF, OF N& COEF, OF My TOZF, JF M2 COEF. OF M6 COZF., OF TEMP.
CING) CIMPOVENT (1/IN.) (1/1N,) (1/IN,) (1/.1N.SQ.) (1/IN.50.) €1/IN.S0.) (L8/IN.SQ/F.)
-~ LAYER 1 ==
~0.5000 SISMA 1 -83,9542 0.0000 g, -21v.8961 0.0000 0. -0.0007
2 ~0.0000 0.0000 U, -0.0000 =0,0000 0. -0.0000
6 0. v. 1.0000 v, 0. -6.U000 [}
~0.3333 SISMA L 95.9511 -0.0000 . 215.8944 -0,0000 0. 0.0008
H 5.0000 0-0U00 0. 0.0000 =0,0000 0. -0.0000
6 0. G- 1,0000 0. 0. *3.9995 [}
~= LAYER 2 =--
-0.3333 SIAMA 1 0.0000 0.0000 v. 0.0090 -0,0000 0. -0.0000
2 ~0.0000 1.4202 0. v.0003 *8,6407 0. 0.0000
[ 0. 0. 1,0000 o. 0, -3.9996 0.
0.5000 SIGMA 1 0.0001 0.0000 G, v.0003 6.0000 0. -0.0n00
H -0,0000 0.4798 0. -0.000% 8.h407 0. -0.0000
6 0. 0. 1.0000 u. o, 6.,0000 0.
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CROSS-PLY

Mx0,2

STIFFNESS MATRIX (C)

(106 LB./IN.5S0.)

7.8000 0.0000 0.
0.0000 0.0000 Q.
. 0. 0.0000
STIFFNESS MATRIX (C)
{10+6 LB./IN.SQ,)
0.0000 0.0000 0.
0.0008 7.4000 9.
0. 'R 0.0000
A A
(106 LB./IN,) (1p=6 IN./LB.)
1.2999 0.u000 0. 0,7693 -0.0000 [
D.0000 6,5001 e. -0.0000 0.1558 0
0. n, 0,0000 0, 0. 0000
8 Be
(10+6 IN.) (100 IN,)
0. 0. 0. 0, a. 0
0. 0. 0. 0. 0. [}
0. 0. [+} 0. 0. 0
He
(10+0 INJ)
0. 0. 0
0. 0. 0
0, 0. 0
D De
(10+6 LB.IN.) (10%6 LB.IN,)
0.2738  0,0000 0. 0,2738 8.0000 [
0.0000 0.3762 0. 0,0000 0.3762 0
0. 0. 0.,0000 0, 0. 0
STRESS COEF. OF N1 COEF. OF N2
(IN.) COMPONENT (1/71IN.) (1/7INs)
-0.5000 SIGMA 1 6.0002 -0.0000
2 6.0000 0.9000
6 0. 0.
-0.4167 STGMA 1 6.0002 -0.0000
2 6.0000 0.0000
) 0. 0.
-0.4167 SIGMA 1 0.0000 u.0000
2 -0.0009 1.2000
6 0. u.
0.4167 SIGMA 1 0.0000 ¢.0uoo
2 =0.0000 1.2000
[ 0. a.
0.4167 SIGHMA 1 6.0002 -0.0000
2 0.0000 u.0000
5 0. u.
0.5000 SISMA 1 6.0002 -0.0000
2 0.0000 b.goco
5 0. 0.

CASE 2 (ALL LAYERS DEGRADED)
3 LAYERS (N33)
== 0DD LAYERS --

THERMAL EXPANSION

(INJ/ING/

ALPHA 1 =

ALPHA 2 =

ALPHA 6 =

-- EVEN LAYERS --
THERMAL EXPANSION
(IN.ZING/

ALPHA 1 =

ALPHA 2 2
ALPHA 6 =

A PRIME
(10-6 IN./LB.)

. 0.7693 ~-0.0000 0.
. ~v.0000 0.1538 0.
.0000 Us 0. 0000.0n00
B8 PRIME
(10-6 1/LB.)
. 0. 0. 0.
. ' 0. O,
. 0. 0. 0,
D PRIME

(10-6 1/LB.IN)

. 3.6519 -0.p300 0.

. -0.0u00 2.6584 0,

.0000 Oe 0. 0000,0000

COEF., OF N6 COEF. OF M4 COEF, OF M2

(17INy) {1/IN.SQ.) 11/IN.SQ)

== LAYER 1 -~
. ~14,2422 0.0000
0. =U.0002 =6.0000
1.0000 u. 0.
Us ~11.8686 G.0000
U, =0.0099 =0.,0000
1.0000 V. 0.

-« LAYER 2 =--
U, ~U.0000 =0.,0000
0. v.0000 «8.6399
1.0000 v, 0.
0. 0.0003 v.,0000
0. -0.0000 8,6399
1.0000 v. 0,

-- LAYER 3 --
0, 11.8646 «0,0000
0, 0.0000 0.,0000
1.0000 0. [
0. 14.2422 «0.0000
a. 0.000D 0.0000
1.0000 0. o,

MATRIX (ALPHA}
DEG.F.)

3.5000
11,4000
0.

MATRIX
DEG.F.)

C(ALPHA)

11,4000
3.5000
0.

THERMAL FOR3E
(LH./IN./DEG,F L)

N1-T = 4,5498
NZ=-T = 22,7502
Nb-T = 0,

THERMAL MOMENT
(LB./DEG.F,)

M1-T = o0,
M2-T = 0,
He-T = 0,
COEF. OF M6 (OEF. OF TEMP.

(1/IN.SQ.) (LBZIN.SQ/F.)

0. 0.0000
0. -¢.0n00
~6.0000 0.

0. 0.0000
n. -0.0n00
=5.000¢C 0.

0. =0.0000
0. 0.0000
-5.000¢C 0.

0. -0.00N0
0. 0.0000
5.000C 0.

0. 0.00n0
0. -0.00N0
5.0000 0.

0. 0.0000
0. -0.0000
6.0000 0.
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CROSS=-PLY

STIFFNESS MATRIX (C)
(10+6 L8./IN.S0.)

ME=D. 4

CASE 2 (ALL LAYERS DEGRADE)D)
2 LAYERS (N=2)

-=- DDU LAYERS -~
THERMAL EXPANSION MATRIX C(ALPHA)
C(IN./IN./DEG.F,)

7.8000 0.0000 0. ALPHA 1 = §.5000
0.0000 0.0000 0. A_PHA 2 = 11.4000
0. a. 0.0000 ALPHA 6 = 0.
-- EVEN LAYERS -~
STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
(10¢6 LB./IN.SQ.) (IN./7IN./DEG.F.)
0.0000 0.0000 0. ALPHA 1 = 11.4000
v.0000 7.8000 9. ALPHA 2 = 3,5000
U, 8. 0.0000 ALPHA 6 = 0.
A As A PRIME THERMAL FQRCE
(10e6 LB./IN.) (106 IN./LB.) (10-6 IN./LB,) (LB./IN./DEG.F.)
2.2285 0.0000 0. 0.,4487 ~0.0000 0. 8.8637 =-0.0000 0, N1-T = 7,7996
0.0000 5.5718% 0. =0,0000 0.1795 0. “U.0000 0.2656 0. Ng=T = 19,5004
0. a. 0,0000 0, 0. 0000.0000 u. 0. 0000,0000 NO6=T = 0,
8 Be B PRIME THERMAL MOMINT
(1046 IN.) (10«0 IN.) (106 1/L84) (LB./DEG.F.)
-0.7959 0. 0, 20,3571 0.0000 0. 23,5614 -0.0000 0. “1-T = -2,7856
0. 0.795% 0. -0,0000 -0.1428 0. ~0.0000 -D.6030 0. Me=T = 2.78%6
0. 0. 0. (B 0. [ 0. 0. 0. uo-T = 0,
He
(10+0 IN.)
-0,3571 0.0000 0.
-0,0000 0.1428 0.
0, 0. 0..
0 144 0 PRIME
(10¢6 LB.INJ) (1046 LB.ING? (10-6 1/LB.IN.)
0.2994 0,0000 0. 60,0152 0.0000 0. 65.9705 -0.0600 0,
0.0000 n,3506 0. 0,0000 0.2369 0. *0.,0000 4.2213 0,
0. 0. 0.0000 0, 0. 0.0000 u. 0. 0000,0n00
b4 STRESS COEF, OF N1 ZOEF. OF N2 Z0:ZF, OF N6 COEF. OF My COEF. OF M2 COUEF. OF M6 COIF. OF TEMP.
C(IN,) COMPONENT (1/71IN4) (1/1N.) (17IN,) (1/1N.Sa.y (1/IN.50G,) (1/IN-50.) (LB/IN,SQ/F.)
~= LAYER § -~
-0.5000 SIGHMA 1 -22.7526 0.0000 0. -73.5064 0.0000 0. -0.0002
2 -0.0002 0.0000 0. -0.0000 ©0,0000 0. -0.0000
6 0. 0. 1,0000 u. o, -6.0005 [
-n.2143 SISHMA 1 29.752% -0.0000 [ 73,5063 ~0.0000 0. 0.00n2
2 0.0000 u.uuoo 0. U.00035 0, 0000 . -0.0000
6 0. t. 1.0000 . u. -2.5716 0.
== LAYER 2 --
-0.2143 SI3MA 1 6.0000 0.0000 0. U.000G «0.0000 0. -0.0000
2 ~0.0000 $.0798 0. 0.0000 -11.7595 0. 0.n000
6 0. 0. 1.0000 u. 0, ~2.971% 0
0.5000 S3IGHA 1 0.0000 -0.0000 0, 0.0091 0.0000 0. =0.0000
2 0.0002 -0.2/799 0. -0.0003 11,7595 0. -0,0000
6 0. 0. 1,0000 0. v, 6.000C 0.
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CRISS-2Y Hz0.4

CASE 2 (ALL LAYERS DEGRADED)

3 LAYERS (Na33)

-~ 00D LAYZIRS -~

STIFFNESS MATRIX ()
(10+6 LB./IN.5Q.)

THERMAL EXPANSION MATRIX (ALPHA)
CIN./IN./DEG.F,)

7.8000 0.0000 J. ALPHA 1 = 35,5000
u.0300 0.0000 3. ALPHA 2 = 11,4000
0. 0. g.0000 ALPHA 6 = O,
== ZVEN LAYERS --
STIFFNESS MATRIX (C) THERMAL, EXPANSION MATRIX CALPHA)
(10+6 LB./IN.SO.) tIN./ING/DEGLF )
u.,0000 0.,0000 Je ALPHA 1 = 11,4000
u.0000 7.8000 3. ALPHA 2 = 3,5000
0. 0. 3.0000 ALPNA 6 = 0,
A Ao . A PRIME THERYAL FORZE
(10«6 o B.7IN.) (19-6 IN./LB.) (10-6 IN,/LB,) (LB./IN./DEG,F,)
2.2286 0,009 0. 0,4487 -0.v0vD 0. J.4487 -0.0000 0. N1-T = 7,8002
0.0000 5.5714 [ -0,0000 0.17%95 [ -U0.0000 0.179% 6. NZ-T 3 19,4999
0. L. 0.0000 0, 0. 00J0.0000 0. 0. 0000.0000 N6-T = 0,
l ye B8 PRIME THERMAL MOMINT
(10+6 IN.) (10+0 INy) (10-6 1/L8.} (LB./DEG.F,)
0. C. 0. [ 0. 0. 0. 0. 0, Ml-T = 0,
0. 0. 0. 0. 0. 0. '} 0. 0, ne-71 = 0,
0. [ 0. 0. 0. 0. U 0. 0, ®6=-T = 0,
Hé
{10+4 IN,)
n. 0. 0.
0. 0. 0.
0. 0. 0.
") De 0 PRIME
(10+6 LB.ING) t10+6 LB.IN.) (1U=-6 1/LB.IN.)
0.4131 0.,u003 g. 0,4131 0.0000 0. 2.4206 -0.0000 0.
0.0000 0.,2369 0. g.0000 B.2369 0. -0.0v00 4,2218 0,
o. U. 0.0000 0, 0. 0.0000 0. 0. 0000,0005
2 STRISS COEF. OF N1 ZUtf. OF N2 CJif, OF N6 COEb. OF M1 CUZIF, OF M2 COEF. OF M& COEF, OF TEMP.
CING) CIMSONENT (1/IN.) (1/71N) (171IN.) (1/1N.50.) t171N.540.) {1/IN.SQ.) (L37IN,.SQ/F.)
-~ LAYER 1 =--
-N.5000 SI3SMA 1 J3.4993 -v.0000 0. ~9.44p2 0.0000 0. 0.0000
2 n.opoo $.0000 0. -0.0000 «0,.0000 0. -0.0000
LY 0. U. 1.0000 u. 0. -6.000C 0.
~0.3571 SISMA 1 3.499) =0.0000 0. -6.7430 0.0u00 0. o.0nn0
2 0.,0000 0.0000 o, =0.0000 «0.0000 0. «0.0000
L) 0. 0. 1.0000 0. 0. ~4.¢857 9.
- LAYER 2 =~
=0.3571 SISHA 1 0.0009 0.0000 O =0.0000 «0.0000 0. =0.0000
2 =0.0002 1.4000 0. 0.0000 “11.7602 0. 0.0000
5 0. 0. 1.,0000 0. 0. ~4.2857 a,
0.3571 SISMA 1 0.0003 0.0000 0. 0.0000 0.0000 0. -0.00n0
2 -0.0000 1.4000 0. =0.0000 11,7602 0. 0.0000
[} 0. a. 1.0000 v. 0. 4.2857 0.
== LAYER 3 =~
0.3571 SISMA ¢ 3.4997% =0.0000 0. 6.,743) «0,0000 0. 0.0000
2 0.000) 9.0000 0. 0.0000 0.0000 0. =0.0000
) 0. [ 1.0000 [ Q. 4.2857 0.
0.5%5000 SIGMA 1 3.4997 -0.0000 Q. v.4402 «0.0000 0. 0.0000
2 0.0002 0.0000 0. 0.3800 6,0000 0. -0.0000
5 0. [N 1.0000 0. 0. 6.0000 0.,
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CRDSS~PLY Hx1.0

STIFFNESS MATRIX (03
(16+6 LB./IN.SQ,)

CASE 2 (ALL LAYERS DEGRADED)
2 LAYERS (N22}

00D LAYZIHS -~
THERMAL EXPANSION MATRIX (ALPHA}

CIN./IN./DEG.F,)

7.8300 0.0000 9. ALPHA 1 = 3.5000
u.0000 0.0000 L ALPHA 2 = 11.4000
0. 0. 2.0000 ALPHA 6 = 0.
-- EYEN LAYERS --
STIFFNESS MATRIX (C) THERNAL EXPANSION MATRIX {ALPHA)
€10+6 LB./IN.S0,) ¢(IN./IN./DEG.F.)
0.0000 0.0000 3. ALPHA 1 = 11,4000
6.0000 7.8000 9. ALPHA 2 2 3.5000
0. 9. 3.0000 ALPHA 6 = O,
A Ae A PRIME THER4AL FQORCE
(10+6 LB./IN,) (10-0 IN./LB.) (10-6 IN,/LB) (LB./IN./DEG.F.)
3.9000 0.v008 A, 60,2564 -u.000U 6, 1.0256 =-0.9306 0. NL1-T = 13,6500
0.0000 3.9000 O, -0,0009 0.2564 @, -0.0000 1.0256 0. N2-T = 13,6500
0. [N 0.0000 0. 0. 0030.0000 G 0, 0000,0000 N6-T = 0,
8 ae 8 PRIME THERMAL MQOMENT
(10¢6 IN,) (10+0 IN,» (10-6 1713} (LB./DEG.F,)
-0.9750 0, 0, 0,2500 0.0000 0. $.0/69  0.po0o 0, Ml=T = -3,4125%5
0. 0.9739 0, -0,0000 =-0.2o00 0, -0.0600 -3.09769% 0, M2=T & 3,4125
0. 0. 0. 0. g. a. [ 0. o, H6-T = Q.
He
(10+0 IN,)
-0,2500 0.0000 0,
-0,0000 0.2500 o0,
o, 0. 0.
D De D PRIME
(10+6 LB.IN,) (10+6 LB.IN.) (10-6 1/LA.ING)
0.3250 ¢.u000 O, 0,0313 0.0000 O, 12.3077 -0.0300 O,
0.0000 ©.s250 O, 0.0000 ©0.06%5 0. -u.0un0 12.3577 0,
0. 0. 0,0000 0. 0. 0.0000 U 0. 0000,0000
z STRESS COEF., OF N1 COEF. OF N2 COEF. OF N6 COEF. OF My COEF. JF M2 COEF. OF M6 GZOEF. OF TEMP,
(IN.) COMPONENT (1/IN.) (1/IN,) (1/IN,) (1/IN.Sg.) (17IN.50,) (1/IN.SQ.) (LB/IN.SQ/F.)
-- LAYER 1 -~
-0.5000 SIGMA 1 -4,0000 0.0000 0. -24,0003 0,0000 0. -0.0000
H =0.000) 0.0000 0. ~0.0000 =0.0000 0. -8.000¢
6 0. 0. 1.00pp 0. 0. -6.0000 0
0. SIGMA 1 8.0000 -0.0000 0. 24.0005 °t.0000 0. 0.0001
2 0.0000 0.u000 0, 0.0029 -0,u000 0. =0.0000
6 0. 0. 1.0000 v. 0. °. 0.
-= LAYER 2 -~
0. SIGMA 1 0.0009 v.0000 0. 0.00g0 «0.0000 0. -0.0000
2 -0.0000 8.0000 0. 0.3000 -24.0000 0. 8.000%
4 e. 0. 21,0000 V. o, a. .
0.5000 SISMA 1 0.0003 ~6.0000 0. V. 0002 0.0000 0. -0.0000
2 9.0000 -4.0000 0. -0.0003 24,0000 0. -0.0000
6 0. 0. 1.0000 0. [ 6.000) 0.
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CROSS-PLY M1, 0

CASE 2
3 LAYERS

(ALL LAYERS DEGRADED)
(N23)

~= ODD LAYERS ~--

STIFFNESS MATRIX (C)
(10«6 LH./IN.S5Q.)

THERMAL EXPANSION HATRIX (A_PHA)

CING/IRL/DEG.F )

7.8000 0.0000 0. ALPHA 1 = $.5000
0.0000 0.0000 0. ALPHA 2 = 11.4000
v, 0. 0.0000 ALPHA 6 = 0, .
) -- EVEN LAYERS --
STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (AcPHA)
(106 LB./IN.SQ.) CIN./IN./DEG.F L)
u.0000 0.0000 b ALPHA 1 =z 11,4000
0.o0000 7.8000 0. - ALPHA 2 = 3.5000
g. 0. 0.0000 ALPHA 6 =
A As A PRIME THERMAL FQRCE
(10+6 LB./IN.) {10-6 INJ/LB.) (10-6 IN./LB,) (LB./IN,/DEG.F.)
3.9000 00,0000 0. 0,2564 ~-0.0000 u. 0.2564 -0.0000 0. N1-T = 13,6500
0.0000 3.9000 0. -0,0008 0.2504 n. eU.0UnB0 0.2564 0, Ne=T =2 13,6500
0. 0, 0.0000 0. 0. 0000.0000 0. 0. 0000,0000 No=-T = 0
°] [: 1] & FRIME THERYAL MQMINT
(10e6 INJ) (10+0 IN,) (10=6 1/LB.) (LB./DEG.F.)
0. o, 0. 0. 0. 0. 0. 0. 0, M1-T = 0,
0. v, 0. 0, 0. u. 0. 0, 0. Me=T = 0
0. [ 0. 0. 0. u. Ue 0. 0. M6-T = 0,
He
(16+0 INy)
0. 0. 0.
0. 0. 0.
[ 0. 0.
0 De D PRIME
€10+6 LB,IN,) (10+6 LB.IN.) (10~6 1/LB.IN.)
0.5588 0,0000 0. n.5588 0.0000 0. 1.7582 -0.0000 0,
0.0000 0,081% 0. 0,0000 0.081% 0. -0.0Uu0 12,3077 0,
0. 0, 9.0000 0. 0. 0.0000 U, 0. 0000,0000
z STRESS COEF. OF N1 CUtF. OF N2 COJEF, OF N6 COEF. OF ML COEF, JOF H2 COEF. OF M6 COEF. OF TEMP.
C(INL) COMPONENT (1/IN.) (1/7INe) (17IN,) (1/IN.SQ.) (1/IN.5Q.) (1/IN.50.) (LBZIN,SQ/F.)
-- _AYER 1 --
-0.5000 SIGMA 1 2.0009 -0.0000 0. -6.8571 0.0000 0. 0,0000
H 0.0000 0.0000 0. -0.0000 °0,0000 0. -0,0000
6 a. 0. 1,0000 u. 0. -6.0000 e.
-6.2500 SIGMA 1 2.0000 -0.0000 0. -3.4286 0,0000 0. 0.0000
2 0.0000 0.0000 0, -0.0000 «0.0000 0. -0.0000
6 0. 0. 1.,0000 0. a. -3.4000 [
~= _AYER 2 --
-0.2500 SISMA L 0.0000 0.0000 0. -0.0000 »0.0000 0. -0.0000
2 -0.,0000 2.0000 0. 0.0000 -24.0000 0. 0.0000
] 0. 0. 1.0000 u. [N -3.0000 0.
6.2500 SI3MA 1 6.0600 0.0000 a. 2.0000 ¢.0000 0. -0.0000
2 -0.0000 2.0000 0. ~0.0000 24.0000 0. 0.0000
6 9. t. 1.0000 U. 9. 3.0000 0.
~= _AYEH 3 =~
0.2500 SIGMA 1 2,0000 -0.0000 0. 3.4286 «0.,0000 0. 0.0000
2 0.0000 0.0000 0. 0,0000 6.u000 0. -0.0000
6 0. 0. 1,0000 a. 0. 3.0000 0.
n.5000 SISHA 1 2.0000 -0.0000 0. 6,8571 «0.0000 0. 0.0000
2 0.0009 0.0000 0. 0.0000 o,0000 0. -0.0nne
] 9. 0. 1.0000 u. o. 6.0000 0.
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STIFFNESS MATRIX

CR0SS-PLY M=2,0

CASE 2 (ALL LAYERS DEGRADED)

2 LAYERS (N=2)

-= DDD LAYERS --

(Cy

(31046 LB./IN.50,)

7.8000
0,0000
0.

0.9000 0.
n.0000 0.
0.0000

THERMAL EXPANSION HMATRIX (ALPHA)

== EVEN LAYERS --

STIFFNESS MATRIX (C)
{10+6 LB./IN.SO,)

o.0000
0.0000
u.

A
(10+6 LEB./IN.}

5.,2003
g.n000
0.

~0.8666

0.

0.0000 0.
2.5997 0.
U. D.0000

8
(10«6 INJ)
0. 0.
0.8666 0.
0. L

0
(10+6 LB,IN.?

0.3370 o.0000 0.
0.0000 0.3130 0.
0. 0. 0.0000
7 STRESS
CIN) COMPONENY
-0.5000 SIGHA 1
2
6
0.1667 SIGMA 1
2
&
0.1667 SIGMA 1
2
]
0.5000 SIGMA 1
H
6
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0.0000 0.
7.8000

0.
0.0v00

Ad
(106 IN./L3.}

0.1923 -0.0000 O,
-0,0000 0.3347 0.
0, 0. 0000,
Be
€10%U IN)
0,1666  0.0000 0.
-0,0000 =-0.3333 0.
0. (B 0.
He
(10+0 IN,)
-0,1666 0.0000 O,
«0,0000 0.,3333 0.
3. G. 0,
O
€10+6 LB.IN.)
0.,1926 0.0000 0.
0,0000 ©.0241 0,
0. v. 0.
COEF. OF N1 COEF. OF N2
(1/IN) (1/INy)
-0.7496 u.0000
-0.00030 0.0u00
0. u.
3,74%5 -0.0000
n,0000 U.0000
9, 0.
0.0000 0.000
-3.0000 21.0046
[ 0.
0.0000 -0.0000
28,0000 #15.0041
[ 0.

THERMAL EXPANSION MATRIX

CIN./7IN./DEG.F,)
ALPHA L = 3.5000

ALPHA 2 = 11,4000
ALPMA 6 = 0,

(IN./IN./DEG.F,)

ALPHA 1 = 11.4000

(ALPHA)

ALPHA 2 = 3.5000
ALPHA 6 =
A PRIME THERHAL FORZE
(10-6 IN./LB,) (LB./IN./DEG.F.)
0.3365 -0.0000 0. N1-T = 18,2009
“0,D000 5.0018 6. N2-T = 9.099%
0000 (U 0. o0pgo,unuo N6-T = 0,
B PRIME THERMAL MOMEINT
(10-6 1/LB.) (LB,/JEG.F.}
0.8652 0.0000 0, M1-T = -3,0332
0.0000 -13.8509 0, M2-T = 3,0332
[Ny 0. 0, Mo-T = 0,
D PRIME
(10-6 1/L8.IN,)
5.1915 -0.,0000 a,
=0.,00N00 41,5506 0,
0000 Ue g, 0000,0005
CJEF, OF N6 COEF. OF ML COEF. OF M2 COEF. OF M6 COEF. OF TEMP.
(17IN.) 117IN.SQ.) {1/IN.SQ.) (17IN.SQ.) (LBZIN.SQ/F.)
<= LAYER 1 --
Ue =13.4986 0.0000 0. -0.0000
0. -0.0000 «0,0000 0. -0.0000
1,0000 U, Q. “6.0000 0.
0. 13.4986 ©0,0000 0. 0.0000
0, 0.00p0 «0, 0000 e. -80.0000
1.u000 0. o, 2.0004 0.
== LAYER 2 =-~-
'Iy 0.0000 =0.0000 0. ~0.0000
0, V.000G 54,4103 o. 0.0002
1.0000 0. a, 2.0004 0.
0, 0.0000 0.0000 0. =0.0000
G, -0.0093 54,6104 0. -0.0001
1,0000 0. 0. 6.0000 0.



7.8000
0.0000
0.

CROSS=-PLY H=2.0

STIFFNESS MATRIX (C)
(106 LB./IN.SO,)

0.0000 J.
0.0000 2.
"0 9.0000

STIFFNESS MATRIX (C)
(10+6 LB./IN.SO.)

CASE 2 (ALL LAYERS
3 LAYERS (N23)

- 00D LAYEZRS --

- EVEN LAYERS --

DEGRADED)

THERMAL CXPANSION NATRIX (ALPHA)
CIN./IN./DEG.F,)

ALPHA 1 = 3.5000
ALPHA 2 3 11,4000
ALPHA 6 = O,

THERMAL EXPANSION MATRIX
C(IN.7IN,/DEG.F,)

(A.PHA)

ALPHA 1 = 11,4000

0.0000 0.0000 0.
v.0000 7.5000 0.
v, 0. 0.0000
A Ae
(10+6 LB./IN,) (19-6 IN./LB.)
5.1999 ©.0000 O, 0.,1923 -0.0000 O,
0.0000 2.64001 0. -0,0000 0.3846 0.
0. 0, 0.0000 0, 0. 0000,
] Be
€(10+6 IN.) (10+0 IN,)
0. G, 0 0, 0. 0.
0. 0. 0 0, 0. 0.
0. [N 0 0. 0. 0.
He
(10+0 IN,)
0, 0. 0,
0. U 0.
0, 0. v,
D De
(10+6 LB.IN,) (106 LB.IN.)
0.6259  0.0000 0, 0,6259 0.0000 O,
0.0000 0.C241 O, 0,0000 0.0241 0,
0. 0. 0,0000 0. 0. 0.
z STRESS COEF., OF N1 COEF. OF N2
(IN.) COMPONENT (1/7IN.) (1/INy)
“0.5000 SIGHA 1 1.5000 -0.0000
2 0.0000 0.0000
6 0. 0.
-0.1667 SIGMA 1 1.5000 -0.0000
2 0,0000 0.0000
6 0., 0.
=0.1667 SIGMA 1 n.0000 0.0000
2 =0.0000 2.9999
6 0, 0.
0.1667 SIGMA 1 n.0000 8.0000
2 ~0,0000 2.9999
6 0. 0.
0.1667 SIGMA 1 1.5000 -0.0000
2 0,0000 0.0000
s 0. 0.
0.5000 SIGHA 1 1.5000 -0.y000
2 0.0000 0.0000
6 0, 0.

AP
t10-6
U.e1923 -0.
=0.0000 0.
eoo00 0. 0.
® P
{10=6
Ga 0.
0. 0.
U 0.
D P
(10-6
1,5976 ~-0.
=0,0U0C 431,
0000 0. 0,
COEF. UF No CGEF. O
(1/7IN,) (1/IN.S
== LAYER 1 =--
0. -6.23
0. =0.00
1,2000 U.
0. -2.07
0, -u.00
1,0000 0.
== LAYER 2 ~--
0. =0.00
G, 0.00
1,0000 0.
o, v.00
0, -0.00
1,0900 u.
-=- LAYER 3 --
0, ¢.07
0, 0.00
1.0000 Ve
O 6.23
0. .00
1.0000 0.

ALPHA 2 =
ALPHA 6 =

3.5000
¢.

RIME THERMAL FQRCE
IN /LB, ) (LB./IN./DEG.F.}
6600 0. N1-T = 18,1998
ELYY} [ N2=T = 9,1002
0000.0000 N6-T s 0,
RIME THERMAL MOMINT
1/7L0.) (LB./DEG,F,)
0. Mi-T s -0,0000
0. M2-T = -0,0000
0, M6-T = 0o,
RIME
1/LB.IN.)
0000 0,
5358 0,
00006,9005
F ML COEF, OF M2 COEF. OF M6 (COEF. OF TEMP.
6.) (1/IN.SQ,) (1/IN.SG.) (LB/IN,SQ/F.)
08 0.0000 0. 0.n000
00 =0.0000 0. «0.0000
0, -6.0008 0.
70 0.0000 0. 0.0000
00 ©0,0000 0. -0,0000
0. -2.U000 o,
83 «0,0000 0. -0.00n0
09 -53.9377 0. 0.0000
0. =2.0000 0.
0c 60,0000 0. -0.0000
00 83,9977 0. 0.0000
0. 2.0000 0.
73 =0,0000 o. 0.0000
0d 60,0000 0. -0.0000
0, 2.0000 0.
08 «0.0000 0. 0.0000
09 0.0008 0. -0.0000
0. 6.0000 0.
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A A A PRIME
(10+6 LY./IN.) (19-6 IN./LB.) €10-6 IN./LB.)
6.2400 0,000 0. 0.1603 -0.0000 0. t.1903 -0.p0300 0,
0.0000 1.5600 . -0,0000 0.6410 0. -0.0000 31.4088 O,
0. 0. 0.0000 0, 0. yo030,0000 0. 0. 0006,0000
8 Be 8 PRIME
(10«6 IN,) (10«0 IN,) (10-6 1/LB+)
-0.6240 G, 0. 0,100 8.v000 O, u.3uL5  0.0300 U,
0. G.6229 0. -0,0000 =-0.4000 0. 0.0000 -76.9194 0,
n. 0. 3. 0, a. 0. 0. 0. 0.
He
€10+0 LIN,)
-0,1000 0.0000 0.
-0,0000 0.4000 0,
0. 0. g.
)] De D PRIME
(1n+6 LB,IN,) (13+6 LB.IN,) (10-6 1/(B.IV.)
0.3952 0.0009 o, 0,3328 0.0000 0. d.0u48 -0.0u0n O,
0.0000 0.2549 9. 0.00086 0.0082 0. ~U.0000 152.2987 0,
0. a, 0.0000 0, . 0,0000 0. 0. 0000,000%
z STRESS CJEF. OF N1 COEF. OF N2 COEF. UF No COEF. OF M1 GOEF. OF M2
(IN) CIMPONENT (1/7IN.) (1/IN) (171N, (1/71N.50Q.) (171IN.80.)
~- LAYER y --
-0.5000 SIGMA 1 0.3125 -0.0000 0, -9.3750 0.0000
H 0.0000 0.0001 0. -0.0000 -0.0002
5 0. 0. 1.0000 0. 0.
0.3000 SIGHA 1 ?.1875 -0.0000 0, 9.3752 °0,0000
? 01,0000 0.u000 v, L.0002 «0,0000
s a. 0. 1,0000 v, v,
-- LAYER 2 -~
0.3000 SIGMa 3 0.0000 0.0000 0. 0.0020 -0.1000
? -0.0080 64,9970 0. 0.0009 -149,.9926
3 0. . 1.0000 v. [UR
0.5000 SIGMA 3 0.000D -0.U000 0, U.0000 0.0000
? 0.0000 -54,9973 0, -u.0000 149.9934
s a, v, 1,0800 0. 0.
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CROSS~PLY Mz4,0 CASE 2 (ALL LAYERS DEGRADED)
2 LAYERS - (NE2)

== 0DD LAYERS --

STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
(106 LB./IN.SO.? {IN./IN./DEG.F,)
7.8000 g.0000 - 0. ALPHA 1 = 3,5000
u,2300 0.0000 J. ALPHA 2 = 11,4000
v. 0. 2.0000 ALPHA 6 = D,
==~ EVEN LAYERS --
STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
(10+6 LB./IN.SG.) {IN./IN./DEG.F,)
¢.0000 0.2000 0. ALPHA 1 = 11,4000
0,0000 7.8000 0. ALPMA 2 = 3.5000
0. 0. 0.0000 ALPHA 6 = 0,

THERYAL FORGE
(LB./IN./DEG.F.)

N1-T = 21,R400
NZ=T = 5,4500
No-T 3 0,

THEKMAL MQOMINT
(LY./DEG.F,)

M1-T =
M2-T =
Mo-T =

-2.1840
2,1040
9.

COEF. OF M6 COEF. OF TEMP,
{1/IN.S50.) (LB/IN.SQ/F.}

0. -0.0000
0. ~6.0000
=6.,0000 0.
0. 0.0n00
0. -0.0000
3.6000 0.
0. -0.0000
0. 0.0005
3.0000 0.
0. -0.00090
6. -0.0004
6.00006 0.



CROSS=PLY M24.0 CASE 2 (ALL LAYERS DEGRAQED)
3 LAYERS (N=3)
== 00D LAYERS --
STIFFNESS MATRIX (8) THERMAL EXPANSION MATRIX (ALPHA)
(106 LB./IN.S50.) C(IN.7IN./DEG.F,)
7.8000 0.0000 0. ALPHA 1 = 3.5D00
u.0000 0.0v00 2. ALPHA 2 = 11,4000
u. 0. 0.0000 ALPHA &6 = 0.
== ZVEN LAYERS --
STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
(1n+s LB./IN.SQ,) (IN./7IN./DEG.F,)
0.0000 0.0000 0. ALPHA 1 = 11.4000
u.0000 7.8000 0. ALPHA 2 = 3,5000
Jo a. 9.0000 ALPHA 6 = 0.
A Av A PRIME THER%AL FORZE
(106 LB./IN.) (10-6 IN./LB.) (10-6 IN./LB,} (LB./IN./DEG.F.)
6.2395 0.0000 0. 0,1503 -0.0000 0. 0.1603 -0.0000 0. N1-T = 21,A38%
0.0000 1.5603 8. -0.0000 0.6408 0. ~U.,0u00 0.6408 0. NZ-T = 5,4619
0. U, 0.0000 0. 0. Qoou.0009 u. C. 00600,0n00 N6-T = 0,
-} Be B PRIME THERMAL MOMENT
(10+6 IN,) (1U*0 IN,} (10-6 1/LB.) (LB./DEG,F.)
~0.0001 0. 0. 0.0000 0.00U0 0. 0.0u00 0.0000 0. Hi-T = -0,0002
0. 0.000% 0. «0,0000 -0.0000 0. U, 0000 =-0.0387 0. M¢=-T = 00,0002
0. 0. 0. 0. v. 9. ' 0. 0. Mb=-T = 0
He
(10+0 IN,)
-0.0300 g.p000 U,
-0,0000 0.0000 [
0, 0. 0.
0 Os D PRIME
(10+6 LB.IN,) €10+6 LB.IN,) §10-6 1/LB.IN.)
0.6448 o.0000 Q. 0,6448 0.0000 0. 1.5509 -0.p000 0,
0.0000 0,u052 [ 0.0000 0.0052 U. ~U,0UU0 192.1329 o,
0. U. 0,0000 0, 0. 0.0000 U, 0. 0oov,npo5
14 STRESS COEF. OF NL{ CUEF. OF N2 COEF. OF N& COEt. OF My COEF. OF M2 COEF. OF Mé COEF, OF TEMP.
C(IN.) COMPONENT (L/IN.) (1/IN,) (1/IN) (1/IN.SQ.) (1/IN.50.) (1/IN.SQ.) (LB/IN,SQ/F .}
-~ LAYER 1 -~-
-0.5000 SIGMA 1 1.2501 ~0.u000 0, -6.0483 0,u000 0. 0.00n0
2 0.00090 0.voo00 0. -0.0000 «0.0001 0. -0.00n0
6 0. 0. 1.0000 u. 0. -6.000C e,
-0.1000 SIGMA 1 1.2501 -y.0000 U, -1.2096 v.0000 0. 0.0000
2 0.000) 0.0000 0, -0,0000 =0,.0000 0. ~0.0900
[ a. 0. 1.0000 V. 0. =1.200¢C 0.
-- LAYER 2 --
-0.1000 SIGMA 1 0.0009 0.0000 0. -0.0000 =0.0000 0. -0.0000
2 -0.0000 5.0035 0. U.0000 -149.8%27 0. 0.,0000
6 0. 0. 1.0000 v. 0. -1.2000 o,
0.1001 SIGHA 1 0.0000 0.0000 0. v.g000 v,0000 0. -0.00n0
2 -0.0003 4.9930 0. -u,0000 149,8927 0. 0,0000
[} 0. 0. 1.0000 u. 0. 1.2008 0.
-- LAYER 3 ==
0.1001 SIGMA ¢ 1.2501 =0.0000 0. 1.21¢06 =J.0000 0. 0.0000
2 0.0000 0.0000 0. v.000¢C 0.0000 0. =t.0000
3 0. 0. 1.0000 o. 0. 1.20U8 0.
0.5000 SIGMA 1 1,2502 ~0.0000 0. 6.0485 *0,0000 0. 0.0000
2 0.0000 0.0000 0. v.0000 00001 0. -0.0000
6 0. 0. 1,0000 u. e, 6.U003 [
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ANGLE-PLY THETA = 5 DEGREES CASE 1 (ALL LAYVERS INTACT)
2 LAYERS (N=2)
—= OCD LAYERS --
SYIFFNESS FATRIX (C) THERMAL EXPANSION FATRIX (ALPHA)
(1046 LB.7IN.SG.) {IN./IN./CEG.F.)
7.8930 0.6962 ~0.4140 ALPHA 1 = 13,5800
€.6962 2.6L30 -0.C471 ALPHA 2 = 11,3400
-0.4140 -0,0471 1.2830 ALPHA 6 = 0.6059
== EVEN LAYERS =--
STIFFNESS FPATRIX {C) THERMAL EXPANSION FATRIX (ALPHA)
{(10+6 LB./IN.SC.) (IN./IN./DEG.F.}
7.8930 0.6962 0.4140 ALPHA 1 = 13,5600
C.t962 2.6630C 0.C471 ALPFA 2 = 11,3400
C.4140 0.0471 1.2830 ALPHA &6 = -0,.6859
A As A PRIVE THERMAL FORCE
t1C+6 LB./IN.) (10-¢& IN./LB.) {1C-¢6 IN./LB.) {LB./IN./DEG.F.)
7.8930 €.6962 0. 0.1297 -C.0339 0. 0.1313 -0.0338 0. N1-T = 35,7100
0.6962 2.€630 0. -0.0339 C.36844 0. -0.€338 0.3844 0. N2-T = 32,6446
Q. C. 1.2830 0. C. 0.719% 0. 0. 0.7895 NE-T = 0.0C00
e Be 8 PRIME THERMAL MOMENT
(1C+e INL) {1C+G INJ) (10-6 1/18.) {LB./DEG.F.}
0. 0. 0.1035 0. c. -0.0130 Q. C. -0.1234 M1-T = 0.
0. 0. 0.0118 0. C. -0.0C10 0. 0. -0.0096 M2-7 = O,
0.1035% c.c118 C. ~-0.0807 -C.C092 0. -0.1234 =-0.0096 0. M6-T = 0.2820
He
(1C+0 IN.)
Q. C. 0.0807
0. C. 0.0092
0.0130 €.o0010 0.
c De D PRIFE
(1046 LB.IN.) (10¢6 LB.IN.) (10-6 1/708.1IN.)
0.6577 C.C580 C. 0.6494 C.0571 0. 1.5755 =0.4053 0.
0.0580C G.2219 0. 0.05MN 0.2218 0. ~0.4C53 4.€127 0.
G. C. 0.1069 0. C. 0.1056 0. 0. 9.4736
z STRESS CCEF. OF N1l CCEF. OF N2 COEF. OF N6 COEF. OF #] CCEF. CF M2 (CDEF. OF M6 COEF. OF TEMP.
(ING) COMPCNENT {1/1N4} (171ING) (171N} {1/IN.5Q.) {1/71N.5Q.) (1/71IN.SQ.) {LB/IN.SQ/F.)
~- LAYER 1 --
-0.5000 SIGFA ] 0.9872 -~0.0010 0.1634 -6.0255 -0.0020 0.9805 -0.2121
2 -0.0015 0.9999 0.018¢ -C.0029 -6.0002 0.1116 -0.0241
[ 0.0264 0.c021 0.,9871 0.15€3 0.0124 -6.0238 0.4381
0. SIGMA 1 l.0128 0.0010 -0.3268 €.0511 -0.0040 ~0.9805 0.2121
2 0.0015 1.0001 -0.0372 0.0058 0.0005 ~-0.1116 0.0241
L] -0.0528 ~0.0041 1.0129 ~0.1583 -0.0124 0.0515 -0.8762
== LAYER 2 =--
0. SIGMA 1 1.0128 0.0010 0.3268 -0.C511 -0.0C40 ~0.980% 0.2121
2 0.0015 1.0001 0.0372 -C.C0058 -0.0005% -0.1116 0.0241
6 0.0528 0.0041 1.0129 -0.158e3 -0.0124 -0.0515 0.8763
0.5C00 SIGFA 1 0.9872 -~0.0010 -0.1634 ©.0255 0.0020 0.9808 -0.2121
2 ~-0.0015 0.9999 -0.0186 0.€029 6.0002 C.1116 -0.02%4)
6 -0.0264 ~0.0021 0.9871 0.1583 0.0124 6.0258 -0.4381
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ANGLE-PLY THETA =

STIFFNESS MATRIX (C)
{20+5 LB./IN.5C.)

5 DEGREES

3 LAYERS (N=3)

== 00D LAYERS -~

CASE 1 (ALL LAYERS [INTACT)

THERMAL EXPANSION MATRIX (ALPHA)
{IN./IN./DEG.F.)

7.8930 0.6962 =0.4140 ALPHA 1 = 13,5600
0.6962 2.60630 =0.C471 ALPHA 2 = 11.3400
~0.4140 ~0.0471 1.2830 ALPHA 6 = 0.60%59
=~ EVEN LAYERS -—
STIFFAESS PATRIX (C) THERMAL EXPANSION MATRIX (ALPHA)
{1046 LB./IN.SC.) (IN2/IN./DEG.F.)
7.8930 0.6962 0.4140 ALPHA 1 = 3.5600
0.£962 2.6630 0.Cs71 ALPFA 2 = 11.34C0
G.4140 0.0471 1.2830 ALPHA & = -0,.6839
A Ae A PRIPE THERMAL FORCE
(1046 LB.ZIN.) (10-¢ IN./LB.) (10-6 IN./LB.) (LB, /IN./DEG.F.)
7.8930 0.6962 -0.1379 0.1299 -0.0339 0.0136 0.1299 -0.033% 0.0136 N1-7 = 35.710C
0.6962 2.6630 -0.0157 -0.0339 C.3844 0.0C11 -0.0339 0.3844 ¢.0011 N2-T = 32,6446
-0.1379 -0.C157 1.2830 0,0136 0.0011 0.7809 0.0138 0.0011 0.7809 N6-T = -0,3752
] Bs 8 PRINFE THERMAL MOMENT
(10+6 IN.) {10+0 INJ) . (10-6 1/L8.) {LB./DEG.F.)
0. 0. 0. 0. 0. 0. 0. 0. 0. M1-T = -0.0000
0. 0. 0. 0. c. 0. 0. C. 0. M2-T = -0,0000
0. 0. 0. 0. C. 0. 0. C. C. He-T = 0.
He
(1C+0 IN.)
0. C. 0.
0. C. 0.
[ C. 0.
C De C PRIFE
(1046 LB.IN.) (10¢6 LB.IN.} {10-6 1/LB.IN.)
0.6577 0.0580 -0.0319 0.6577 €.0580 -0.0319 1.57183 -0.4051 0.4578
0.0580 0.2219 -0.003& 0.0580 C.2219 -0.0C36 ~-0.4051 4.6127 0.0357
~0.0319 -0.C036 0.1069 -0.02319 -0.003& 0.1069 0.4578 0.0357 9.4911
4 STRESS COEF. OF N1 COEF. OF N2 COEF. OF N¢ CCEF. OF M1 COEF., OF M2 CCEF., OF ¥6 COEF, OF TEMP,
{ING) COMPCNENT (1/1N.) (17IN.) [RVAL PR (1/IN.5C.) (1/71N.50.) 11/1N.5Q.) (LB/IN.SQ/F.)
-= LAYER 1 --
-0.5000 SIGMA 1 0.9962 ~0.0003 -0.2156 ~5.9930 0.000% 0.1458 -0.0621
2 -0.0004 1.0000 -0.0245 0.0008 ~5.9999 0.0166 ~-0.0071
6 -0.0348 -0.0027 0.9962 6.0235 0.0018 -5.9929 -0.5790
-0.1667 SIGHA 1 0.9963 -0.0003 -0.2156 ~1.9981 0.0002 0.0485 -0.0621
2 =0.0004 1.0000 -0,0245 0.,0003 -2.0004 0.6055 -0.00T1
6 -0.0348 -0.0027 0.9962 o.0078 0.0C06 -1.9980 -0.5760
~= LAYER 2 -~
~0.1667 SIGMA 1 1.0075 0.0006 0.4310 -2.0612 -0.0048 ~l.2615 0.1242
2 0.0009 1.0001 0.0490 -0.0069 -2.0009 -C.1435 0.0141
& 0.0696 0.0054 1.0075 ~0.2036 -0.0159 -2.0618 1.15%6
0.1667 SIGmA 1 1.0075 0.0006 0.4310 2.0612 0.0048 1.2615% 0.1242
2 0,00C9 1.0001 0.0490 0.0069 2.0009 0.1435 0.0141
[ 0.0696 0.0054 1.0075 0.2038 0.0159 2.0618 1.1556
== LAYER 3 -~
0.1667 SI1GrA 1 0.9963 -0.0003 -0.2156 1.9981 -0.0C02 ~0.04A5 ~0.0621
2 -0.0004 1.0000 -0.0245% -0.0003 2.0004 -0.0055 -0.0071
& -0.0348 -0.0027 0.9962 -0.0078 -0.0006 1.9980 ~0,5780
0.5C0C SIGrFA 1 0.9963 -0.0003 -0.2156 5.9930 -0.0005 -0.1456 -0.0621
2 -0.0004 1.0000 -0.0245 ~0.0008 5.9999 -0.0166 -0.0071
6 -0.0348 -0.0027 0.9962 -0.0235 -0.0018 5.9929 -0.5780
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A
STIFFNE
(10+6
7.68C0
0.789)3
-0.7969 -
STIFFNE
{10es
7.6800
C.76893
C.79H9
A
(1C+6 LEL/IN.)
7.6800 0.7993 [+ 28
0.7893 2,69C0 0.
C. C. 1.3760
e
(1C+¢& IN.)
0. C. 0.1997
[« C. 0.0273
0.1997 €.0273 0.
C
(1046 LELING)
G.640C C.CuS8 o.
0.0658 C.2242 0.

0. c. 0.1147
4 STRESS
(EN.) COMPCNENT
-0.5000 SiGrA 1

2
L]
0. SIGMA 1
6
0. SIGMA 1
2
[]
0.500¢C SIGFA 1
2
]

84

NGLE-PLY THETA = 10 DEGREES
SS PATRIX (C)

LB./IN.S5C.)

0.7893 -0.7989

2.6900 -0.1093

0.1C093 1.3760

CASE 1 (ALL
2 LAYERS (N22)

=~ 0DD LAYERS --

LAYERS INTACT)

THERMAL EXPANSION MATRIX (ALPHA)
(INo/ZIN./DEG.F.)

== EVEN LAYERS ==

THERMAL EXPANSION PATRIX

ALPHA 1 = 13,7382
ALPHA 2 = 11.1620
ALPHA 6 = 11,3510

{ALPHA)

UIN./ING/CEGLFL)

3.7302

ALPHA 2 = 11.1620

SS FATRIX (C)
LB./INJSC.)
0.7893 0.7989 ALPHA | =
2.6900 0.1093
0.1093 1.3760 ALPHA
Ae A PRIFME
110-¢ IN./LB.) (1C-6 IN./LB,)
0.134¢3 ~-C.0394 O. 0.1403 -0.0388 O,
-0.0394  0.3833 0. -0.0388 0.3834 C.
0. c. 0.7267 0. 0. 0.7613
Be B PRIVE
[1C+0 IN.) t10-6 1/L0.)
0. a. -0.0257 0. 0. -0.2351
o. c. -0.0C26 o. o. -0.0238
-0.1451 -C.0199 O, -0.2351 -0.0238 O.
L)
(1Ce0 IN.I
o. c. 0.1451
o. c. 0.0199
0.0257 €.0026 O.
De C PRIFE
(1046 LB.IN.) (10-6 1/18.1IN.)
0.611C  C.0618 0. 1.6837 -0.4656  C.
0.Cely  C€.2236 O, -0.4654  4,6006 O,
o. c. 0.1€95 0. 0. 9.1362
COEF. OF N) CCEF, OF N2 COEF. OF N6 CCEF, OF #1 CCEF. CF P2
(171N 11/71N.) (171N} (1/IN.SG.) (1/71N.SG.)
-
-~ LAYER 1 --
0.9530 -0.C048 0.3041 -6.0939 -0.0095
-0.0064 0.9993 0.0416 -0,0129 -6.0013
0.0539 0.0055 0.95:4 c.3236 0.0328
1.0647C 0.0048 -0.6082 c.1879 0.0190
0.0064 1.0007 -0,0832 0.0257 0.0€26
-0.1075 -0.0109 1.0476 -C.323¢ -0.0328
-~ LAYER 2 --
1.067C 0.C048 0.6062 -C.1879 -0.019¢C
0.0064 1.c007 0.0832 -c.0257 -0.0C2€
0.1075% 0.€109 1.0476 -C.3236 -0,0328
0.953¢C -0.C048 ~0.3061 €.6939 0.0095
-0.0064 0.9993 ~0.0416 c.C129 6.6013
-0.0536 -0.C055 0.9524 c.3236 0.0328

6 = -1.3510

THERMAL FORCE
(LB./INJ./DEG.F.)

N1-T = 36.4402
N2-1T = 32,8287
N6-T = 0.0COC

THERMAL MOMENT
(LA./DEG.F.}

M1-T = 0.0COC
N2-T = 0.
Mé-T =  0,5869
CCEF. OF v6 COEF. CF TEwFP,

117IN.5Q.) (LB/IN.SQ/F.)

1.8247 -0.7966
0.2496 -0.109¢C
-6.09%2 0.9147
-1.8247 0.7966
-0.2496 0.109¢C
0.19Cs -1.8295
-1.20247 0.7966
~C.2496 0.109C
-0.19C5 1.8295
1.0247 ~0.7966
C.2696 -0.1090
6€.0952 -0.9147



STIFFNESS MATRIX (C)

ANGLE-PLY

{1C+6 LB./IN.SC.}

7.68C0
€.7893
-C.17989

STIFFNESS MATRIX (C)

0.7£93
2.69C0
-0.1C€93

(1C+6 LB./IN.SCL}

THETA = 10 DEGREES

-0.7989
-0.1093

1.3760

7.6800 0.7693 0.7989
C.7893 2.6900 0.10923
0.7989 0.1093 1.376C
A A=
(10%6 LB./ING) {10-6 IN./LB.)
7.6800 0.7893 -0.2662 0.1351 -~-C.039) [¢]
0.7893 2.69C0 ~0.0364 ~0.0393 C.3823 0
~0.2662 -C.0384 1.3760 0.0251 €.0025 0
2] B
(1C+6 IN.) (1040 IN.)
0. C. C. O. C. 0
Q. C. 0. 0. C. 0
0. C. 0. 0. C. [}
He
{1C+0 IN.)
0. C. o
Ou C. 0
0. C. 0
C D=
(10+¢6 LB.ING) (1046 LB.ING)
0.6400 C.C658 -0.CH16 0.6400 G.0¢58 -0
0.0658 C.2242 -0.C08B4 0.C656 C.2242 -0
-0.0¢16 -C.C084 0.1147 -0.C616 -C.008¢ o
4 STRESS COEF. OF N1 CCEF, OF N2
[RE PR COFMPCNENT (1/1IN.) (171IN.)
-0.5C00 SIGra 1 0.9866 -0.C014
2 -0.0018 0.9998
& ~0.0691 -0.0070
-0.1667 SIGMA 1 0.9466 ~0.0014
2 ~0.0018 0.9998
& -0.0691 =-0.0070
~0.1667 SIGrA ] 1.0267 0.0027
2 0.0037 1.0004
& 0.1382 0.0140
0.16617 SIGMA 1 1.0267 0.0027
2 0.0037 1.0004
] 0.1382 0.0140
0.le67 SIGFA 1 0.9866 -0.0014
2 -0.0018 0.9998
& ~0.0691 -0.0070
0.5cC0C SIGHA 1 0.9866 -0.0014
2 -0.001¢ 0.9998
6 ~-0.0691 -0.0070

CASE 1 (ALL
3 LAYERS (Nz1)

== (DD LAYERS --

—= EVEN LAYERS --

LAYERS INTALT)

VHERMAL EXPANSICN MATRIX (ALPHA)

(INS/IN./DEGLF.)

3.i382

ALPHA 1 =

ALPHA 2 = 11,1620

ALPHA & = 1.3510
THERMAL EXPANSION FATRIX

(IN./IN./CEG.F.)

ALPHA 1 = 3,7382
ALPHA 2 = 11,1620
ALPHA 6 » -1.3510

A PRIPE
t10-6 IN./LB.)
+0251 0.13%1 -C.0393 0.0251
«0C25 ~0.0393 0.38133 0.0C25
+7317 c.c251 0.0025 C.7317
8 PRIME
(1C-6 1/LE.1}
. 0. 0. 0.
. 0. 0. 0.
. 0. 0. 0.
C PRIPFE
t1C-6 1/LB.IN.}
.0616 1.6947 -C.4643 C.8768
~0C84 -0.464) 4.€CC5 c.0888
-l1147 0.8768 0.0888 9.1988
COEF. OF N6 CCEF. CF Pl CCEF. CF M2
(1/1IN.) (1/IN.SC.) (1/IN.SQ.)
== LAYER 1 -~
-0.3898 =5.9740 0.002¢
~0.0533 0.C036 -5.9996
0.9864 C.0483 0.0C49
-0.3898 ~1.9917 0.0009
-0.0533 c.Co012 -2.00012
0.9864 €.0l61 €.0C16
== LAYER 2 --
0.7793 -2.2253 -0.0228
0.1066 -0.0308 -2.0C35
1.0271 -0.4l84 ~0.0424
0.7793 2.2253 0.0229
0.1066 0.0308 2.0035
t.0271 C.4184 0.0424
~- LAYER 3 --
-0.3898 1.9917 -0.0009
-0.0533 -€.0012 2.0C0)
0.9864 -0.0161 -0.001¢
-0.3898 5.9740 ~0.0026
~0.0533 -C.C03¢ 5.9996
0.9864 -0.0483 -0.0049

THERMAL FORCE
{LB./IN./DEG.F.)

N1-T = 36.4402
N2-T = 32,8287
Ne~-T = -0.7822

THERMAL MCMENT
(LB./DEG.F.)

#1-7 = -0.000C
M2-7 = -0.000C
ME-T = 0.0000
CCEF. OF 6 CDEF, OF TEMP,
f1/7IN.SC.) (LR/IN.SQ/F.)
0.2723 -0.2268
0.C373 -0.0310
~5.5737 ~1.1723
0.C9CB ~0.2268
0.C124 -0.0310
~1.6916 ~1.,1723
-2.359) 0.4535
-C.2228 0.0620
-2.2284 2.3440
2.3593 0.4535
C.2228 0.0620
2.2284 2.3440
~0.C9C8 ~0.2268
~0.Cl24 -0.0310
1.5916 -1.1723
-0.2723 -0.2268
-0.C373 ~-0.0310
5.9737 -1.1723
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ANGLE-PLY THETA = 15 DEGREES CASE 1 (ALL LAYERS INTACT)

STIFFNESS PATRIX (C)
(1C+6 LB./IN.SC.)

T.3420 0.9320 -1.1290
c.5320 2.7430 -0.1993
-1.1290 -0.1593 <2190

STIFFNESS PATRIX (C)
(1C¢6 LB./IN.SQ.)

7.3420 0.9320 1.1290
0.9320 2.7430 0.1993
1.12590 0.1593 1.5190

2 LAYERS [N=2}

=~ 0DD LAYERS ~--
THERMAL EXPANSION MATRIX (ALPHA}
{IN./1Ko/DEG.F.)

ALPHA 1 = 4,0292
ALPHA 2 = 10.8700
ALPHA 6 » 1.97%0

~= EVEN LAYERS ==
THERMAL EXPANSION PATRIX {ALPHA)
(INJ/IN./CEG.F.)

ALPHA 1 = 4,0292
ALPHA 2 = 10.8700
ALPHA 6 = =1.9750

A As A PRIME THERMAL FORCE
(1046 LB./INLY (10-¢ IN./LB.} t1C-6 INJ/LB.) (LB./EN./DEG.F.)
T.3420 c.5320 0. 0.1423 -C.0484 0. 0.1547 -0.0466 0. N1-T = 37,4833
0.932¢ 2.7430 0. ~0. 0684 C.3810 D. -0.0466 0.3812 0. N2-7 = 33,1780
C. C. 1.5190 0. C. 0.6583 0. C. C.720%5 N6-T = 0.
e Be B PRIME THERMAL MCMENT
(1C+¢&6 IN,) 11C+0 INJ} 110-6 1/LB8.) (LB./DEG.F.}
0. C. 0.2822 0. C. ~0.0378 0. C. ~0.3265% Ml-T = 0.0000
0. G, 0.0458 0. Q. -0.0053 0. Qe ~0.0461 M2-7 = 0.0000
0.2822 0.C498 0. -0.1858 -C.0328 0. ~0.3285 -0.C461 a. ne-T = Q.92088
Hs
(1C+0 1IN.)
0. C. 0.1858
0. C. 0.0228
0.0378 0.0053 0.
C - C PRIFC
(1046 LB.N,) (1046 LB.IN,) 110-6 1/1L8.1IN.)
0.6118 €.0777 c. 0.559 C.0684 0. 1.8561 -C.%5595 C.
0.0777 C.2286 G. 0.Ce84 C.2269 0. ~0.559% 4.5749 C.
O C. 0.1266 0. C. 0.1157 0. Q. B.5462
L STRESS COEF, OF N1 CCEF, OF N2 COEF, CF N6 CCEF. CF M1 CCEF. CF M2 CCEF. OF #6 COEF, CF TEMP,
{ING) COMPCNENTY (171N.) (1/1N.) t1/1IN.) (1/71N.SC) {171K.50Q.4) 1171IN.5C.) (LB/IN.SQ/F.)
=~ LAYER 1 =~
-0.5C00 Sicma 1 0.9C78 -0.C130 0.4C61 =6.1843 -0.0260 2.4404 ~1.6197
2 -0.0163 0.9977 0.0718 -C.C325 -6,0066 0.4308 ~0.2859
L] 0.0827 0.0117 0.9055 0.4960 0.0700 ~6.1889 1.4528
0. SiGra 1 1.0922 0.0130 -~0.8135% 0.3687 0.0521 ~2.4404 1.6197
2 0.0163 1.0023 ~0.1436 0.C651 0.0C92 ~0.4308 0.2859
] ~0.1653 -0.0233 1.0945 -0.4960 -0.0700 0.3778 ~2.9C56
== LAYER 2 --
0. SIGMA 1 1.0922 0.C130 0.8135 -C.36¢€7 -0.0521 ~2.4404 1.6197
2 0.0161) 1.0023 0.1436 -0.0651 -0.0092 ~0.4308 0.2859
6 0.1653 0.0223 1.0945 =C.49¢0 ~0.070C ~0.3778 2.9C56
0.5000 SIGrA ) 0.9078 ~0.C130 ~0.4C67 6.1843 0.0260 2.4404 ~1.6197
2 ~0.0163 C.9977 -0.0718 0.0325 6.0C46 0.4308 ~0.2859
[ -0.0827 -0.0117 0.9055 0.49¢0C 0.0700 6.1889 ~1.4528
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NGLE-PLY

THETA = 15 DEGREES

STIFFNESS MATRIX (C)

(1046 LB./IN.5Q.)

7.3420
0.9320
-1.1290

0.9320
2,7430

-0.1993

-1.1290
-0.1993
1.5190

STIFFNESS PATRIX (C)

11046 LB./IN.SQ.)

A
(1046 LB./IN.)

Te342C 0.9320 -0.3762
0.9320 2.7430 -0.0664
-0.3762 -0.CHb64 1.5190
B
{10¢6 IN.)

0. C. 0.
0. Ce 0.
0. Q. 0.
c
(10¢6 LE.IN.)
0.6118 €C.0777 -0.0871
0.0777 €.2286 =-0.0154
-0.0871 -C.Cl1%4 0.1266
1 STRESS
tING) COMPCNENT
~-0.5C0C SIGMa |
2
6
-0.18687 SIGPA 1
2
]
-0.1667 S1Gra 1
2
6
0.1667 SIGeA 1
2
6
0.1667 SIGMA 1
2
6
0.5000 SIGrA 1
2
6

3 LAYERS (N»3)
~= 00D LAYERS -~

THERMAL EXPANSION MATRIX

== EVEN LAYERS -~

THERMAL EXPANSION MATRIX

CASE 1 (ALL LAYERS INTACT)

(ALPHA)

{INa/INL/DEG.F.)

ALPHA 1 =

4.0292

ALPHA 2 = 10.8700

ALPHA 6 =

1.9750

LALPHA)

{INJ/ING/DBG.F.)

4.0292

ALPHA 2 = 10,8700
ALPHA 6 = -1,9750

0.9320 1.1290 ALPHA | =
2.7430 0.1993
0.1993 1.5190
As A PRIFE
(10-¢ IN./L8.) (10~-6 IN./LB.)
O.144C -0,0481 0.0236 0.144C -0.0481 0.01336
~0.0481 0.3810 0.0047 -0.0481 0.3810 0.0047
0.0336 0.0047 0.6668 0.0336 0.0047 0.6668
Be B PRIPFE
(1040 IN.) 110-6 1/718.)
0. C. 0. 0. 0. C.
0. C. 0. C. 0. 0.
0. C. 0. 0. 0. 0.
He
{1C+0 INJ)
0. C. 0.
0. C. 0.
0. Co 0.
Ce C PRIME
(1046 LB.IN.) {10-6 1/LB.IN.)
0.6118 C.0777 -0.0871 1.8796 -0.5562 1.22%9
0.0777 C.2286 -0.0154 -0.5562 4.5754 0.1731
-0.0871 -C.0154 0.1266 1.2259 0.1731 8.T764¢
COEF., OF N1 CCEF, OF N2 COEF, OF N6 CCEF. QF M1 COEF. CF M2
t171N.) (171N.) (1/1IN.) (1/1N.SC.) {17IN.5C0)
~=- LAYER 1 ~-=
0.9747 -C.C036 -0.5020 ~5.9487 0.0072
-0.0045 0.9994 -0.0886 €.0091 =5.9987
-0.1020 ~C.0144 0.9741 C.0Te5 0.0105
0.9747 -0.0036 -0.5020 -1.9833 0.0024
-0.0045 0.9994 ~0.0886 €.0030 -2.0000
-0.1020 -0.0144% 0.9741 C.0248 0.0035
~= LAYER 2 -~
1.050% 0.0071 1.0037 ~2.4447 -0.0627
0.0089 1.0013 0.1772 -0.0764 -2.0115
0.2040 0.0208 1.0518 -C.6457 -0.0912
1.0505% 0.0071 1.0037 2.4447 0.0627
0.0089 1.0013 0.1772 0.0784 2.011%
0.204C 0.0288 1.051e C.6457 0.0912
== LAYER 3 ~=
0.9747 -0.0036 -0.5020 1.9833 -0.0024
-0.00453 0.999% -0.0806 -0.C030 2.0C0C
-0.102¢C =0.0144 0.9741 -0.C248 -0.003%
0.9747 -0.0036 -0.5C20 5.9487 -0.0C72
-0.0045 0.9994 -0,0886 -0.0091 5.9987
-0.102¢C ~0.Cles 0.9741 =0.C745 -0.010%

THERMAL FORCE
(LB, Z7IN./DEG.F.}

N1-T = 37,4835
N2-T = 33,1700
N6-T = =1,23179

THERMAL PCMENT
{L0./DEG.F.)

M1-T « =0.000C
M2-1 = -0,00C0
Mé-T = 0.0000

COEF, OF m6 COEF.
{17IN.5C.)

G.20687 =0.4441
0.0647 -0.0784
-5.5474 -1.7931
0.,1223 -0.44481
0.0216 -0.0784
-1.5829 -1.7931
=3.1748 o.08079
-0.5608 0.1567
=2.4558 3.5832
J.1768 0.8879
0.56C8 0.1%567
2.43558 3.3852
-0.1223 -0.4441
-C.C216 -0.0784
1.5829 -1.7931
-0.36067 ~0.4441
-C.Cb47 ~0.0784
5.5474 -1.7931

CF VENWP.
(LB/INSC/FEL)

87



THETA = 30 DEGREES CASE 1 (ALL LAYERS INTACT)
2 LAYERS (N=2)

ANGLE-PLY

== 00D LAYERS -~

STIFFNESS MATRIX (C) THERMAL EXPANSION MATRIX {ALPHA)

(10+6 LB./IN.5Q.) fIN./INJOEG.F.)

5.8340 1.4690 -1.6150 ALPRA 1 = 35,4730
1.4690 3.1780 -0.6852 ALPHA 2 =  9,42350
~-1.6150 -0.6852 2.0550 ALPHA 6 = 3.4200

-« EVEN LAYERS ==
THERMAL EXPANSION MATRIX (ALPHA)
{IN./IN./DEG.F.)

STIFFNESS FATRIX (C)
(10+6 LB./IN.SQL)

5.8340 1.4690 1.6150 ALPHA 1 = 35,4750
1.4690 3.1780 0.6852 ALPHA 2 = 9,423%0
1.6150 0.6852 2.C550 ALPHA 6 = -3.4200
A As A PRIPE THERMAL FORCE
(10¢6 LB./IN.) (10-6 IN./LB.) (10-6 IN./LB.) (LB./IN./DEG.F.}
5.834C 1.4690 Q. 0.15640 -C.0897 0. 0.2220 -0.0786 C. Ni1-T = 40,2619
1.4690 3.1780 0. -0.0897 G.35%61 0. -0.0786 0.3605 0. N2-T = 35,6313
0. c. 2.0550 0. C. 0.4866 0. 0. 0.5086 Né~-T = 0.0000
B Ba B PRIFE THERMAL MOMENT
(10¢8 IN,) (1C+0 IN.) 110-6 1/LB.) L0, /DEG.F.)
. c. 0.4037 0. C. -0.0630 0. 0. ~0.4447 M1-F = 0.0000
C. C. C.1713 0. C. ~-0.0248 0. a. -0.1752 m2-1T = 0,0000
0.4037 0.1713 0. ~0.1965 ~C,0834 0. -0.4447 -0.1752 0. M6-T = 2.0676
He
{1C+0 1IN}
Q. C. 0.1965
0. C. 0.00834
0.0630 C.0248 0.
[ D D PRIPE
(1046 LB.ING) 11046 LB.IN.? (10-6 1/LB.IN.)
0.4862 C.1224 0. 0.4068 C.08a88 0. 2.6638 -0,9437 C.
0.1224 0.2648 0. 0.0488 C.2506 0. -0.9437 4.3255 Ce
C. c. C.1712 0. C. 0.1416 0. 0. T.0631
1 STRESS COEF. OF N1 CCEF, OF N2 COEF, OF N6 COEF. OF M1 COEF. CF M2 COEF. OF M6 COEF. OF TEMP,
{IN.} COFPCNENT [RVAL PY] (171N.) (171N (1/1IN.5C.) (1/IN.5Q.) (1/IN.SC.) (LB/IN,SQ/F.)
== LAYER 1 --
-0.5C0C SIGrFA 1 0,8204 -0.C707 0.4753 -6.3591 -0.1414 2.9517 =-3.8540
2 -0.0762 0,9700 0.2017 -0.1524 -6.0600 1.2099 ~l.6352
L] 0.1522 0.0600 0.7904 0.9139 £.3599 -8.4191 3.2694
0. SIGFA 1 1.179¢6 0.C7G7 -0.9506 0.7182 0.20829 -2.8517 3.8540
2 0.0762 1.C300 ~0.4C3) 0.3047 0.1200 ~1.2099 1.6352
6 -0.304¢ -0.1200 1.2096 ~0.9139 -0.3599 0.0302 -6.5387
== LAYER 2 --
0. SIGMA | 1.179¢ g.cr07 0.9506 -0.7182 -0.2629 ~2.8517 3.8540
2 0.0762 1.0300 0.4033 =C.3047 -0.1200 -1.2099 1.6352
6 0.3048 0.1200 1.20986 -0.9139 -0.3599 -0.8382 6.5387
0.5C00 SIGMA ] 0.8204 -0.0707 ~0.4753 6.3%91 0.141s 2.8%517 -3.8%40
2 -0.0762 0,9700 -0.2017 C.1524 6.0600 1.2099 -1.6352
L] -0.1523 -0,0600 0.7904 0.9129 0.3599 6.4191 -3.2694
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ANGLE=-PLY THETA = 30 DEGREES CASE ) ([ALL LAYERS [NTACT)
3 LAYERS ({Ns3)

-— DCD LAYERS --

STIFFNESS PATRIX {C} THERFAL CXPANSICN MATRIX (ALPHA)
{1046 LB./IN.SQ.) (IN/IN./DEG.F.]
5.8340 1.469C -1.€150 ALPHA 1 = 5,47350
1.4690 3.1780 -0.6852 ALPHA 2 = 99,4250
~1.6150 ~0.60852 2.C550 ALPHA & = 1,4208
. == EVEN LAYERS -~
STIFFNESS MATRIX (C} THERMAL EXPANSION MATRIX {ALPHA)
{1046 LB./IN.SQG) (IN./INL/CEG.F.)
5.8340 1.4690 1.£150 ALPHA 1 = 5.4750
1.4690 3.1780 0.6852 ALPHA 2 = 9.4250
1.61%0 0.6852 2.C550 ALPHA 6 = =3,4208
A As A PRIFE TFERMAL FORCE
(10¢6 LB.7IN.) (10~6 IN./LB.) (10-6 IN./LB.) {LE,/IN./DEG.F.)
5.834C 1l.4690 -C.5381 0.1575 =C.0803 0.0419 0.1675 -0.0883 0.0419 N1-T = 40.2619
1.4690 3.1780 -0.228) -0.00883 C.3567 0.0165 -0.088) 0.3567 0.,0165% N2-T = 35,6519
-0.5381 -C.2283 2.0%50 0.0419 0.0165 0.499 0.0419 0.0165 0.4994 N6-T = -2.75%7
e Be B PRIFE THERMAL MCMENT
(10+¢ IN.} (1C+0 IN.) {1C-6 1/t8.) {LB./DEG.F.)
0. C. 0. 0. 0. 0. 0. 0. Q. M1-V = -0.0000
0. Q. 0. 0. C. 0. 0. C. C. M2-7 = =0.000C
0. C. 0. 0. C. 0. 0. 0. 0. M8-Y = 0.0C00
He
(10+0 INJ)
0. Q. 0.
0. C. 0.
0. C. 0.
[ Ds C PRIPFE
(1046 LR.ING) (1046 LB.IN.) t10-6 1/LB.IN.}
0.4862 0.1224 -0.1248 0.4862 C.1226 -0.1246 2.7238 -0.9201 1.6979
0.1224 0.2648 -0.0529 0.122« €.2648 -0.0529 -0.9201 4.3348 C.6087
~0.1266 -C.C529 0.1712 -0.1246 =C.0529 0.1712 1.6979 0.6687 T.281)
14 STRESS COEF, OF N1 CCEF. OF N2 COEF. OF N6 CCEF. OF M) COEF. CF M2 C(CEF, OF M6 COEF. OF TEm
(IN.) COMPONENT {171N.) {171N.) {171N.) (1/71N.5Q. ) (171N.5Q.) (171IN.SC) {LB/IN.SC/F.
== LAYER 1 --
-0.5C0C SIGFA ) 0.9549 -0.C178 -0.53728 -5.8984 0.0400 0.4358 ~0.9607
2 -0.0191 0.9925 -0.2282 0.0431 ~5.9830 0.1849 -0.4110
] -0.1724 -0.0679 0.9473 0.1397 0.0530 -3.8014 -3.6995
~0.1667 SIGHMA 1 0.9545 ~0.0178 -0.537e -1.966% G.0133 0.1453 -0.56817
2 -0a0191 0.9925% -0.2282 0.0144 ~1.9947 0.0618 ~0.4110
6 -0.1724 -0.0679 0.9472 0.0466 0.0103 -1.9609 -3.6993
== LAYER 2 -~
-0.1667 SIGrA ) 1.09C2 0.0355 1.0753 -2.0808C7 ~0.3467 =3,7753 1.9369
2 0.0382 1.0151 0.4562 -0.373% -2.1475 ~1.6017 0.8218
[ 0.3446 0.1357 1.1053 -1.2098 -0.4765% =3.C278 T.3968
0.1667 SIGMA ) 1.0902 0.035% 1.0753 2.0807 0.3467 3.7753 1.9369
2 0.0383 1.01%1 0.4562 0.3735 2.1475 1.6017 0.8218
L] 0.344¢ 0.1357 1.1053 1.2098 0.4765 3.0278 T.3968
== LAYER 3 --
0.1667 SIGMA 1 0.9549 -0.0178 -0.5378 1.9665 -0.013) -0.1453 -0.9687
2 -0.0191 0.9925% -0.2282 -0.0144 1.9947 -0.C6l6 -0.4110
6 -0.1724 -0.0679 0.9473 -0.0466 -0.0183 1.5609 ~3.699%
0.5C00 SIGrA ) 0.9549 -0.0178 -0.5378 5.09084 -0.0400 -0.4358 -0.9607
4 -0.0191 0.9925 -0.2282 -0.0431 5.903C -0.1849 -0.4110
6 ~0.1724 -0.0679 0.9473 -C.1397 -0.05%0 5.e014 -3.4995
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ANGLE-PLY THEYA = 45 DEG

STIFFNESS FMATRIX (C)
(1046 LB./INLSCL)

4.23€0 1.7370 -1.3280
1.7370 4.2300 -1.3280
-1.3280 -1.3280 2.3230
STIFFNESS MATRIX (C)
(1046 LB./IN.SQ.)
4.2300 1.7310 1.2280
1.7370 4.2380 1.3280
l.3280 1.3280 2.3230
A As
(1C+6 LB./ING) {10-6 IN./LB.)
4.2380 1.73170 0. 0.2836 -C.ll62 0
1.7370 4.2380 0. -0.1162 €.2836 [}
0. 0. 2,3230 0. c. 0
8 Be
(10+6 IN.) (10+0 IN.)
0. c. 0.3320 0. C. -0
0. C. 0.3320 0. C. -0
0.3320 0.3320 0. -0.1429 -C.1429 ]
He
(1C+0 IN.)
0. C. 0
0. C. [
0.CS55¢ €.0556 0
€ .

(10¢6 LB.IN.) {10+6 LB.IN.)
0.3532 Col4a? 0. 0.3057 €.0973 0
0.1447 €.35132 0. 0.0973 C€.3057 o
C. C. 0.1936 0. C. 0

z STRESS COEF. OF N1 CCEF. DOF N2

{ING} COMPCNENT (171N} [RYAL P
-0.5C0C SiGra 1 0.882) -0.1117
2 -0.1177 0.8823

6 0.1373 0.1373

0. SIGrA 1 L.un Cell77
2 0.1177 1.1177

6 -0.2746 ~C.2746

0. SIGMA ] 1.1177 0.1177
2 0.11177 1.1177

6 0.2746 0.2746

0.5C00 SIGMA 1 0.882) -0.1177
2 -0.1177 0.8823

6 -0.1373 -0.1373
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REES CASE 1 {ALL LAYERS INTACT)
2 LAYERS (N=2)

~=~ DDD LAYERS -~
THERMAL EXPAASION MATRIX
(INJ/INJ/DEG.F.)

ALPFA 1 = T7.45C0
ALPHA 2 = T,4500
ALPHA 6 = 3.95C0

-= EVEN LAYERS --
THERMAL EXPANSION MATRIX
(ING/ING/DEG.F.)

ALPFA 1 = 7.4500
ALPEA 2 = T.4500
ALPHA 6 = -3,95C0

(ALPHA)

(ALPHA}

A PHIVE THERMAL FORCE
(10-6 IN./LB,} {LB./INL/DEC.F.)
. 0.3C33 -0.0965 0. N1-T = 39,2681
. -0.0965 0.3033 0. N2-T = 39,2681
+4£305 0. 0. 0.5318 Ne-T = 0.
8 PRIME THERMAL MOMENT
(10-6 1/LB.) {LB./CEG.F.}
0556 0. 0. ~C.3546 ml-Y = 0.000C
<0556 0. C. -0.3546 M2-T = 0,
. -0.3546 -~0.3546 0. M6-T = 2,6528
<1429
<1429
C PRIME
(10-6 1/LB.IN.)
. 3.6397 -1.1584 0.
- -1.1584 3.6397 0.
«1567 0. 0. 6.3821
COEF. CF N6 CCEF. GF M) CCEF. OF M2 COEF. QOF M6 COEF. CF VTEMP
(171N} (1/71N.5C.) 11/71INn.5€C) (171N.5C.) (LB/IN.SC/F.)
~= LAYER 1 --
0.3531 -6.2355 -0.2355 2.1189 -3.62%4
0.3531 -0.2355 -6.2355 2.1189 -3.62%
0.7645 0.8238 0.8238 -6.4709 4,2218
-0.7063 C.417C9 0.4709 -2.1189 3.6254
~0.7063 C.4709 0.4709 ~2.1189 3.6254
1.2355 -C.8238 -0.8238 0.9419 -8.4556
== LAYER 2 --
0.7063 ~0.47C9 -0.4709 -2.1189 3.6254
0.7063 -0.47C9 -0.4709 -2.1189 3.6254
1.2355 -C.0238 -0.8238 -C.5419 8.4556
-0.3531 6.2355 0.2355% 2.1189 -3.6254
-0.3%531 C.2355 6.235% 2.1189 -3.6254
0.7645 ¢.8238 0.82238 6.47C9 ~h,2278



ANGLE-PLY

THETA = 45 DEGREES

STIFFNESS MATRIX {C)

(1046 LB./IN.SQ.)

4.2380
1.7370
~1.3280

1.7370
4.2380

-1.3280

-1.3280
-1.3280
2.3230

STIFFNESS PATRIX (C)

11046 LB./IN.S5Q.)

3 LAYERS (N=J)
== 0ODD LAYERS -~

== EVEN LAYERS --

CASE 1 (ALL LAYERS INTVACT)

THERMAL EXPANSION MATRIX (ALPHA)

THERMAL EXPANSION MATRIX

(IN./IN.7DEG.F.)
ALPHA 1 = 7.43500
ALPHA 2 = 7,4500
ALPHA & = 13,9300

{ALPHA)

(INe/INJ/DEG.F.)

7.4500
7.4300

ALPHA & = -3,9500

4.2300 1.737¢C 1.3280 ALPHA 1 =
1.7370 4.2380 1.3280 ALPHA 2 =
1.3280 1.3280 2.3230
A Ao A PRINE
(1046 LB./IN.} {10-6 IN./LB,) (10-6 IN./LB.)
4.2380 1.7370 -0.4425 0.2086C -~-0.1138 0.0328 0.2060 -0.1138 0.0328
l.73710 4.2380 -0.4425 -0.1138 0.2860 0.0328 -0.1138 0.2860 0.0322
~0.4425 ~C.4425 2.3230 0.0328 C.0328 0.4430 0.0328 0.0328 0.4430
e Bs B PRIME
{1C+& IN.) (1C+0 IN.) 110-6 17L8B.)
0. 0. 0. 0. C. 0. 0. C. C.
0. C. C. 0. Co 0. 0. 0. 0.
0. c. 0. 0. C. 0. 0. 0. 0.
Ha
(1040 IN.)
0. C. 0.
0. 0. 0.
0. C. 0.
c De D PRIME
(1046 LB.IN.) {10¢6 LB.IN.) (10-6 1/1B.1IN.)
0.3532 C.1447 -0.l025 0.3532 Col4seT -0.1C25 3.6029 -1.1152 1.3591
Colb4? €.3%32 -0.1025 0.1447 C.3532 -0.1C2% ~1.1152 3.6629 1.3591
-0.1025 -0.1025 0.193¢6 -0.1C25 -C.1023 0.1936 1.3591 1.3591 6.6045
1 STRESS COEF. OF N1 CCEF. OF N2 COEF. OF N6 COEF, OF M1 COEF.
{ING) CO¥PONENY (171IN.) (171N 1/1IN.) {1/71N.5C.) (171IN.5Q.)
== LAYER 1 -~
-0.5C0C SIGMA ) 0.971¢C -0.0290 -0.392)3 =-5.9331 0.0669
2 -0.029¢C 0.9710 -0.3923 0.0669 -5.933]1
& -0.1525 -0.1525 0.9419 0.1264 0.1264
-0.16067 SIGMA 1 0.971C -0.0290 -0.36223 ~1.9781 0.0223
2 -0.0290 0.9710 -0.3923 0.0223 -1.9781
6 -0.1525 -0.1525 0.9419 0.04621 0.0621
== LAYER 2 -~
-0.1667 SIGMA |} 1.0581 0.0581 0.7843 -2.5199 -0.579%
2 0.0581 1.0581 0.7843 -0.5795 -2.5799
6 0.30456 0.3049 1.1162 ~1.0947 -1.0947
0.16617 SIGrA 1 1.0581 0.0581 0.78423 2.5799 0.5795
2 0.0581 1.058% 0.7843 0.5795 2.5799
L] 0.304% 0.3049 1.1162 1.0947 1.0947
==~ LAYER 3 -~
0.1667 SIGMA ] 0.9710 -0.,0290 -0.392) 1.91781 -0.0223
2 -0.0290C 0.9710 -0.392) ~0.0223 1.9781
6 -0.15%525 ~0.1525 0.9419 -0.0421 ~0.0421
0.5C00 SIGMA 1 0.9710 -0.0290 ~0.3921 5.9331 -0.0669
2 -0.029C 0.9710 -0.3921 -0.0669 5.9331
6 -0.1525 -0.1525 0.9419 -0.1264 -0.1264

THERMAL FORCE
(LB./IN./DEG.F.)

N1-T = 39,2601
N2-T = 39,2681
Né-F = -3.3337

THERMAL MCMENT
(LB./DEG.F.)

#1-7T = -0.0000
M2-T = -0.00C0
#e-1 = ~0,0000

CF m2 COEF,
(171N.SC.)

0.3250 ~0.8945
0.3250 ~0.8945
-5.0662 ~4.6961
0.1084 ~0.98943
0.1084 ~0.8945
-1.9558 ~4.6961
-2.08158 1.78085
-2.8158 1.7885
-3.1593 9.389
2.01%8 1.7885
2.0158 1.70885
3.1593 9.3094
-0.1084 -0.894%
-0.1084 -0.8945
1.95%58 ~4.6961
-0.3250 ~0.89453
-0.3250 ~0.08945
5.0662 ~4,6961

OF M6 COEF. OF TEMP.
(LB/IN.SQ/F.)
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ANGLE-PLY

THETA = 60 DEGREES

CASE 1 (ALL LAYERS INTACT}

2 LAYERS (N*2)

~= 0ODD LAYERS ~-

STIFFNESS MATRIX (C}
11046 LB./IN.SC.)

3.1780 1.4690 -0.6853

1.4690 5.8330 -1.6150

-0.6853 -1.6150 2.C550
-- EVEN

STIFFNESS MATRIX (C)
(10¢6 LB./IN.SC.)

THERMAL EXPANSION MATRIX (ALPHA)
(IN/IN/OEG.F.)

ALPHA 1 »
ALPHA 2 »
ALPHA 6 =

LAYERS -~
THERMAL EXPANSION MATRIX

9.4250
5.4750
3.4208

{ALPHA)

{INo/IN./DEG.F.)

9.4250
5.4750
6 = =3.4208

THERMAL FORCE
(LB./INL/DEG.F.)

N1-T = 35,6512
N2-T = 40,2564
Né-T = 0.000C

THERMAL MOMENT
(LB./DEG.F.}

Ml-7T = 0.
M2-7 = 0.0000
M6-T = 2,0678

3.1780 1.4690 0.6853 ALPHA 1 =
1.4690 5.8330 1.6150 ALPHA 2 =
0.6853 1.6150 2.€550 ALPHA
A As A PRIME
(1C+6 LB./ING) {10-6 IN./1B,} (10-6 IN./LB,)}
3.1780 1.4650 0. 0.3561 ~-C.0897 0. 0.3605 ~-0.0787 0.
1.4690 5.8330 0. -0.0897 0.1940 0. -0.0787 C.2220 0.
0. C. 2.0550 O. 0. 0.4866 0. 0. 0.5886
] Be B PRIPE
110¢6 IN.) t1C+0 IN.) (10-6 1/1L8.})
0. Q. 0.1713 0. C. -0.0248 0. C. -0.17%2
Ge C. 0.4037 0. c. -0.0¢30 C. Q. ~0.4448
0.1713 0.4037 0. -0.0834 -0.1965 0. -0.1752 -0.4448 0.
He
(1C+0 IN.)
0. C. 0.0834
0. C. 0.1565%
0.C248 €.0630 0.
[ De 6 PRIFE
(10¢¢ LE.IN.} {10¢6 LB.IN.} (10-6 1/18.IN.}
0.2648 C.1224 0. 0.2505 c.csas 0. 4£.3256 -0.9439 0.
0.1224 C.4861 g. 0,0888 0.4068 0. -0.9439 2.6644 C.
0. C. 0.1712 0. Ce 0.1416 0. 0. T7.0634
14 STRESS COEF. OF N1 CCEF, OF N2 CODEF, OF N6 CCEF, OF »1 CCEf. CF M2
(IN.) COMPCNENT {1/IN.) t1/71IN) (171N, 11/71IN.5C.) (1/1h.5Q.)
== LAYER 1 --
-0.5000 SIGrA 1 0.970C -0.0762 0.2017 ~6.06C0 ~0.1524
2 -0.0707 0.8204 0.475) -0.1415 -6.3592
[ 0.06C0 0.1523 0.7904 0.3600 0.9141
0. SIGrA 1 1.0300 0.0762 ~0.4034 0.1201 0.3048
2 0.0707 1.1796 -0.9%06 0.2829 0.713)
6 ~0.1200 ~0.3047 1.2096 -C.3600 ~0.9141
== LAYER 2 ~--
0. SI1GrA 1 1.03C0 0.0762 C.4C34 -C.l201 -0,3048
2 0.0707 1.1796 0.9506 -0.,2829 -0.71812
] o.l2cC 0.3047 1.2096 =-C.3600 -0.9141
0.500C SI1Gea 1 0.9700 -0.0762 -0.2017 6.06CO 0.1524
2 -0.,0707 0.8204 ~0.4753 C.1415 6,3592
] -0.060C ~0.1523 0.7504 0.3600 0.9141
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CQEF. OF r6
(1/7IN.50Q.)

l1.21C1
2.8518
~6.4192

-1.21C1
-2.8518
C.0384

-1.2101
-2.E518
-0.8304

1.2101
2.8518
6.4192

COEF. GF TEMP,
(LB/IN.SC/F.}

-1.63%4
-3.8540
3.2692

1.6354
3.8540
~6.5386

1.6354
3.854C
6.538¢

-1.6354
-3.8540
~-3.2693



3.1780 1.4690 0.6853 ALPHA 1 =
1.4690 5.8330 1.6150 ALPHA 2 =
0.€653 1.6150 2.C550
A As A PRIPE
(1C+6 LB./IN.) {10-6 IN./LB.) (10-6 IN./LB.)
3.178C 1.4690 -0.2283 0.3567 -C.0883 0.0165 0.3567 -0.0883 0.0165
l.469C 5.0330 -0.3381 -0.0883 C.1975 0.0419 -0.0083 0.1975 C.0419
-0.228) -C.5381 2.0550 0.0165 C.0419 0.4994 0.016% 0.C419 0.4994
B Be 8 PRIME
(1C+& IN.) (1C+0 1IN, (10-6 L/LB.}
0. 0. 0. 0. C. 0. 0. 0. 0.
0. Q. 0. 0. C. 0. 0. 0. 0.
0. 0. 0. 0. C. 0. 0. 0. 0.
He
(1C+0 IN.)
G. [ Ge
0. C. 0.
0. C. 0.
C Ce C PRIVE
11046 LB.IN,) (10+6 LB.IN.) {10-6 1/LB.IN.)
0.26480 €.1224 -0.0529 0.2648 C.12264 -0.0529 4.3349 -0.9201 C.66088
0.1224 C.4861 -~0.1246 0.1224 0.4861 -0.1246 -0.9202 2.7244 1.6982
-0.0529 -C.1246 0.1712 ~0.0529 ~-C.l1246 0.1712 0.6608 1.6982 T.2818
3 STRESS COEF. OF N1 CCEF., OF N2 COEF. OF N6 COEF. OF W1 CCEF. CF m2 COEF.
(ING) COMPCNENT (17IN.) (1/71N.) (171N} t1/1Nn.5Q.) t171N.5Q.)
== LAYER 1 --
-0.500C SIiGra 1 0.9925 =-C.0192 -0.22082 -5.9830 0.0431
2 -0.0178 0.9549 -0.5378 0.0400 -5.08984
6 ~0.067§ -0.1724 0.9473 €.0550 0.1397
~0.1867 SIGPA 1 0.9925 -0.0192 -0.2282 ~1.9947 0.0144
2 -0.0178 09549 -0.5378 €.0133 -1.9665
6 -0.067S§ -0.1724 0.9472 0.0183 0.046¢
-= LAYER 2 --
-0.1667 SIGrA ] 1.0151 0.0383 0.4561 -2.1478 -0.2373¢
2 0.0355 1.0903 1.0753 —C.3408 -2.8809
6 0.1357 0.3447 1.1052 -0.4766 -1.2101
0.1667 SIGrA 1 1.0151 0.038)3 0.4563 2.1476 0.3736
2 0.0355 1.0903 1.0753 Ca.34068 2.8809
] 0.1357 0.3447 1.1053 0.4766 1.2101
=- LAYER 3 --
0.1667 SIGrA 1 0.9925 -0.0192 -0.2282 1.9947 -0.0144
2 -0.0178 0.9549 -0.3378 =0.0132 1.9649%
6 ~0.0679 ~0.1724 0.9473 -c.01283 ~0.0468
0.5C0C SIGrA ] 0.9925 -0.0192 -0.2282 5.9830 -0.0431
2 -0.0172 0.9549 -0.5378 ~C.04C0 3.0984
] ~0.06179 -0.1724 0.9473 -C.0550 -0.1397

ANGLE-PLY

THEYA = 60 OEGREES

STIFFNESS MATRIX {C)

3 LAYERS (N=3)

== ODD LAYERS --

CASE 1 (ALL

LAYERS INFACT)

THERMAL EXPANSION MATRIX (ALPHA)

11046 LB.7IN.SC.)

J.1780
1.4490
-C.6853

STIFFNESS PATRIX (C)

1.4690
5.8330
-1.6150

(1046 LB./IN.SQ.)

-0.€853
-1.&150

2.6550

-~ EVEN LAYERS ==

(IN./IN./DEG.F.)

ALPHA 1 = 99,4250
ALPHA 2 = 5.4730
ALPHA 6 = 3,.4208

THERMAL EXPANSION MATRIX

{INS/IN./DEG.F. )

CALPHA)

9.4250
5.4750

ALPHA & = -1.4208

THERMAL FORCE

tLB./IN./DEG.F.)

Ni-T = 35.6512
N2-F = 40.2564
NE-T = -2.756C

THERMAL MOMENT
(Le./DEG.F.)

M1-1 = -0.0COC
M2-Y7 = -0,0000
Me-T = 0.000C

t1/7IN.SQ.}

OF &6 COEF.

0.1849 -0.4111
C.4358 ~0.9687
-5.e814 ~3.6993
0.0617 -0.4111
0.14%3 -0.9687
~1.9609 ~3.6993
-1.6020 0.8219
-3.7754 1.9368
-31.c201 T.3965
1.6020 0.8219
3.7754 1.9268
31.0281 T7.3965
-0.0617 ~-0.4111
~0.1453 -0.95687
1.5609 -3.6993
-0.1849 -0.4111
~0.4350 -0.9687
S.8914 =3.6993

CF 7€
{LB/IN.SQ/F
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ANGLE-PLY THETA = 15 DEGREES CASE 1 (ALL

2 LAYERS (N=2)

== 00D LAYERS ==
STIFFNESS PATRIX (C)
{1046 LB./IN.SQ.)

2.7430 0.9321 =0.1993
0.$321 T.3420 -1.1290
~-0.199) ~1.1290 1.5190

-- EVEN LAYERS -~
STIFFNESS FATRIX (C)
{1046 LB./IN.SQ.)

2.7430 0.9321 0.1993 ALPHA 1 = 10,8700
0.9321 7.3420 1.1290 ALPhA 2 = 4.0292
0.1993 1.1290 1.5190 ALPHA 6 = -1.9750
A Ae A PRIME THERMAL FORCE
11046 LB./ING) {10=-¢ IN./LB.) (10-6 IN./LB,} LB, /7IN./CEG.F,.}
2.7630 c.8321 C. 0.381C -0,0484 o. 0.3812 -0.04066 0. N1-T = 33,1784
0.9321 7.3420 C. =-0.0484 0.1423 0. -0.0466 0.1547 c. N2-T = 37.40845
0. C. 1.5190 0. C. 0.6583 Q. 0. 0.7205 N¢E-T = 0,
] Re 8 PRIME THERMAL MOMENT
{10+¢ IN.) (1040 IN.) {10-6 1/LB,) (LB./DEG.F.)
0. C. 0.0498 Q. Q. -0.0C53 0. 0. ~0.0461 M1-T = 00,0000
[ 28 Q. 0.2822 0. C. -0.0378 0. . ~0.3265 M2-1T = 0.0000
0.0498 0.2822 0. -0.C328 -0.1858 0. -0.C461 -0.3265 C. Mé-T = 0.9288
He
{1C+0 INJ)
0. C. 0.0328
0. C. c.les8
0.0053 c.0378 0.
c Cs 0 PRIPE
11046 LB.IN,) (1046 LB.IN.) {10-6 1/1L8.1N.}
0.2286 C.C777 0. 0.2269 C.0884 0. 4.5750 -~0.5595 0.
0.07717 0.6118 0. 0.0684 0.5594 [« 2 -0.539% 1.8%5061 0.
0. C. 0.1266 0. C. 0.1157 0. 0. 8,6462
L STRESS COEF, OF N1 CCEF. OF N2 COEF., OF N6 COEF. CF N1 COEF. OF »2 COEF. OF M6 COEF. OF TEMP,
tIne) COMPONENT {1/1N2) t1/7IN) (171IN.) {1/1IN.5C.) (1/1N.5Q.) (171N, SC.) (LB/IN.SQ/F.)
== LAYER ] --
-0.5C00 SIGMA 1 0.9917 ~-0.0163 0.0718 -6.00406 -0.0325 0.4308 -0.2859%
2 -0.0130 0.9078 0.4067 -0.,0260 ~6.1842 2.44C4 ~1.6197
L] 0.0117 0.0827 0.9055 0.0700 0.4960 -6.1089 1.4528
0. SiGma ) 1.0023 0.0163 -0.1436 0.0092 0.0651 -0.4308 0.2859
2 0.013C 1.0922 -0.8135 C.0520 0.3687 —2.4404 1.6197
L] -0.02231 -0.1653 1.0945 ~C.0700 -0.4960 0.3778 -2.905¢
~=- LAYER 2 --
0. SIGrFA 1 1.0022 0.0163 0.1438 ~0.0092 -0.0651 -0.43C8 0.2859
2 0.013C 1.0922 0.8135 ~0.0520 -0.3687 ~2.4404 1.6197
6 0.0233 O.1653 1.0945 -0.07C0 -0.4960 -0.3778 2.9056
0.5C0C SIGMA ) 0.9977 -0.0163 -0.07T18 6.0046 0.0325 C.43C8 ~0.2859
2 -0.0130 0.9078 ~0,4067 0.0260 6.1843 2.4404 ~1.6197
6 ~0.0117 -0.0827 0.9055 0.0700 . 0.4960 6.1889 ~1.4528
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LAYERS INTACT)

THERMAL EXPAASION MATRIX
{IN./INa/DEG.F.)

ALPHA 1 = 10,8700
ALPHA 2 = 4,0292
ALPHA 6 = 1.9750

THERMAL EXPANSICN MATRIX
(IN./IN./DEG.F.)

{ALPHA)

{ALPHA)



ANGLE-PLY THETA =

STIFFNESS FATRIX (C)
(1046 LB./IN.SC.)

2.7430 0.9321 -0.1993
0.9321 T.3420 -1l.1290
-C.1993 -1.1290 1.5190

STIFFNESS MATRIX (C)
(10¢6 LB./INL5GC.)

75 DEGREES

CASE 1 (ALL LAYERS INTACT)
3 LAYERS (N=3)

-- DDD LAYERS -~
THERFAL EXPANSICN MATRIX (ALPHA)
tINJ/IN./DEG.F.)

ALPHA 1 = 10.87C0
ALPHA 2 = 4.0292
ALPHA & = 11,9750

~= EVEN LAYERS --
THERFAL EXPANSION MATRIX
(INe/IN./DEG.F.)

CALPHA)

2.7430 0.9321
0.9321 7.3420
0.1353 1.1290
A
{1C+6 LB./IN.) (
2.7430 Ca9321 -0.0664 0. 3810
0.9321 T.3420 -0.3762 -0.0481
-0.C664 -0,37¢2 1.5190 0.0C4?
e
(1Cs+6 INL}
O. C. 0. 0.
Q. C. 0. 0.
0. c. 0. 0.
0O.
0.
0.
L
t10¢6 LEBLIN,)
G.2286 C.C?77T =-0.CLl54 0.228¢
0.0777  €.6118 -0.0871 0.0177
-0.015&4 -C.0B871 0.1266 -0.0154
4 STRESS COEF. OF N1
LING) COMPCNENT (171N,
-0.5C00 SIGMA 1 0.9994
2 -0.0036
& -0.0144%
~0.16617 SIGrA ] 0.9994
2 -0.0013¢
6 -0.0144
-0.1667 Sicea L 1.0013
2 0.0071
6 0.0288
0.1667 SIGMA 1 1.0013
2 0.0C71
6 0.0288
0.1667 SIGMA 1 0.9994
2 -0.003¢
6 -0.014%
0.5C0C SIGFA 1 0.9994
2 -0.0036
s ~0.0144
NASA-Langley, 1965 CR-22)

0.1993 ALPHA 1 = 10.8700
1.1290 ALPHA 2 = 4,0292
1.5190 ALPHA 6 = -1.9750
Ae A PRIVE THERMAL FCRCE
10~¢ IN,/LB.} {1C-6 IN./LB.) (LB./INJ/DEG.F.)
~C.0481 0.0047 0.381C =-0.0401 0.0047 N1-T = 33,1784
C.l440 0.0336 -0.0481% 0.1440 0.0336 N2=T = 37.48645
C.0336 0.6668 0.CCa7 0.C336 0.6068 Ne-T = -1.2379
Bs 8 PRIML THERMAL MCMENT
{10#0 iIN.) (10-6 1/LB.} {LB./DEG.F.)
C. 0. 0. 0. 0. M1-T = -0.0000
[ 0. 0. G. 0. ¥2-1T = -0.00C0
C. 0. 0. 0. C. Me~T = 0.G00C
Ha
(1C+0 IN.)
C. 0.
C. 0.
c. 0.
Cs C PRIVE
(10+6 LB.IN.) [10-6 1/LB.IN.}
C.077T ~0.0154 4.5754 ~-C.5562 C.173C
C.e118 -0.0071 -0.5562 1.879¢6 1.2259
-C.0871 0.1266 0.1730 1.2259 B.T646
CCEF. OF N2 COEF. OF N6 CCEF, OF #1 CCEF, CF P2 CCEF, OF ¥¢ CGEF. CF TEMFP,
(1/(N.) (1/IN.) (1/7IN.SCa) (17IN.5Q.) {1/1N.5C.) (LB/IN.SO/FL)
== LAYER 1 -~
-0.c045 -0.0886 -5.9987 0.0C91 0.Cb47T -0.0784
0.9747 -0.5020 0.0072 =5.9487 0.3667 =0.4441
-0.1020 0.9741 C.01C5 0.0745 ~5.5474 -1.7931
=0.0045 -0.0886 -2.00C0 0.0030 0.C216 ~0.0784
0.9747 -0.5020 0.0024 -1.9832 0.1223 ~0.4441
-C.1020 0.9741 C.0035 0.G248 -1.5829 =1.7931
-- LAYER 2 --
0.0089 0.1772 -2.0115 -0.0784 ~0.5608 0.1567
1.0505 1.0037 -0.0627 ~2.4447 -3.17¢8 0.8879
0.2040 1.0518 -0.0911 -0.6457 ~2.4558 3.5852
0.C089 0.1772 2.0115 0.0784 0.5608 0.1567
1.0505 1.0037 0.00627 2.4447 3.1768 0.8R79
0.2040 1.0518 C.0911 D.06457 2.4558 3.58%52
== LAYER 3} =~
-0.0045% -0.0886 2.0000 -0.0C3C ~C.C216 -0.0784
0.9747 -0.5C2¢C ~0.0024 1.9833 -0.1223 “0.4441
-0.1020 0.9741 -C.0035 ~0.0248 1.9829 =1.7931
-C.C065 -0.088¢6 5.9987 -0.,0091 ~0.Co47 ~0.078¢
0.9747 -0.5020 -0.0072 5.9487 -0.3667 ~0.4441
-0.1020 0.9761 -0.C105 ~0.0745 5.9474 -1.7931



